Skip to main content
Log in

Structural characterization and electrochemical intercalation of Li+ in layered Na0.65Ni0.5Mn0.5O2 obtained by freeze-drying method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

New data on the structure and reversible lithium intercalation properties of sodium-deficient nickel–manganese oxides are provided. Novel properties of oxides determine their potential for direct use as cathode materials in lithium-ion batteries. The studies are focused on Na x Ni0.5Mn0.5O2 with x = 2/3. Between 500 and 700 °C, new layered oxides Na0.65Ni0.5Mn0.5O2 with P3-type structure are obtained by a simple precursor method that consists in thermal decomposition of mixed sodium–nickel–manganese acetate salts obtained by freeze-drying. The structure, morphology, and oxidation state of nickel and manganese ions of Na0.65Ni0.5Mn0.5O2 are determined by powder X-ray diffraction, SEM and TEM analysis, and X-ray photoelectron spectroscopy (XPS). The lithium intercalation in Na0.65Ni0.5Mn0.5O2 is carried out in model two-electrode lithium cells of the type Li|LiPF6(EC:DMC)|Na0.65Ni0.5Mn0.5O2. A new structural feature of Na0.65Ni0.5Mn0.5O2 as compared with well-known O3–NaNi0.5Mn0.5O2 and P2–Na2/3Ni1/3Mn2/3O2 is the development of layer stacking ensuring prismatic site occupancy for Na+ ions with shared face on one side and shared edges on the other side with surrounding Ni/MnO6 octahedra. The reversible lithium intercalation in Na0.65Ni0.5Mn0.5O2 is demonstrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alcántara R, Lavela P, Tirado JL, Zhecheva E, Stoyanova R (1999) J Solid State Electrochem 3:121–134

    Google Scholar 

  2. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691–744

    Article  CAS  Google Scholar 

  3. Lu Z, MacNeil DD, Dahn JR (2001) Electrochem Solid-State Lett 4:A191–A194

    Article  CAS  Google Scholar 

  4. Ohzuku T, Ariyoshi M, Makimura Y, Yabuuchi Y, Sawai K (2005) Electrochemistry 73:2–11

    CAS  Google Scholar 

  5. Yoncheva M, Stoyanova R, Zhecheva E, Alcántara R, Ortiz G, Tirado JL (2009) Electrochim Acta 54:1694–1701

    Article  CAS  Google Scholar 

  6. Yoon WS, Grey CP, Balasubramanian M, Yang XQ, McBreen J (2003) Chem Mater 15:3161–3169

    Article  CAS  Google Scholar 

  7. Ellis BL, Nazar LF (2012) Curr Opin Solid State Mater Sci 16:168–177

    Article  CAS  Google Scholar 

  8. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) Nat Mater 11:512–517

    Article  CAS  Google Scholar 

  9. Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) Dalton Trans 40:9306–9312

    Article  CAS  Google Scholar 

  10. Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I (2012) Inorg Chem 51:6211–6220

    Article  CAS  Google Scholar 

  11. Delmas C, Fouassier C, Hagenmuller P (1980) Phys B + C 91:81–85

    Google Scholar 

  12. Kang K, Meng YS, Berger J, Grey CP, Ceder G (2006) Science 311:977–980

    Article  CAS  Google Scholar 

  13. Xia X, Dahn JR (2012) J Electrochem Soc 159:A1048–A1051

    Article  CAS  Google Scholar 

  14. Zhou F, Zhao XM, Lu ZH, Jiang JW, Dahn JR (2008) Electrochem Solid-State Lett 11:A155–A157

    Article  CAS  Google Scholar 

  15. Rodríguez-Carvajal J (1990) FULLPROF A program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, p 127

    Google Scholar 

  16. Moses AW, Garcia Flores HG, Kim J-G, Langell MA (2007) Appl Surf Sci 253:4782–4791

    Article  CAS  Google Scholar 

  17. Caffio M, Cortigiani B, Rovida G, Atrei A, Giovanardi C (2004) J Phys Chem B 108:9910–9926

    Article  Google Scholar 

  18. Mansour AN (1994) Surf Sci Spectr 3:279

    Article  CAS  Google Scholar 

  19. Yoncheva M, Stoyanova R, Zhecheva E, Alcántara R, Tirado JL (2009) J Alloys Compd 475:96–101

    Article  CAS  Google Scholar 

  20. Treuil N, Labrugère C, Menetrier M, Portier J, Campet G, Deshayes A, Frison J-C, Hwang S-J, Song S-W, Choy J-H (1999) J Phys Chem B 103:2100–2106

    Article  CAS  Google Scholar 

  21. Allen C, Harris SJ, Jutson JA, Dyke JM (1989) Appl Surf Sci 37:111–134

    Article  CAS  Google Scholar 

  22. Lee DH, Xu J, Meng YS (2013) Chem Phys 15:3304–3312

    CAS  Google Scholar 

  23. Yoncheva M, Stoyanova R, Zhecheva E, Kuzmanova E, Sendova-Vassileva M, Nihtianova D, Carlier D, Guignard M, Delmas C (2012) J Mater Chem 22:23418–23427

    Article  CAS  Google Scholar 

  24. Mortemard de Boisse B, Carlier D, Guignard M, Delmas C (2013) J Electrochem Soc 160:A569–A574

    Article  CAS  Google Scholar 

  25. Berthelot R, Pollet M, Doumerc JP, Delmas C (2011) Inorg Chem 50:6649–6655

    Article  CAS  Google Scholar 

  26. Ren Z, Shen J, Jiang S, Chen X, Feng C, Xu ZA, Cao GH (2006) J Phys Condens Matter 18:L379–L384

    Article  CAS  Google Scholar 

  27. Bos J, Hertz J, Morosan E, Cava R (2007) J Solid State Chem 180:3211–3217

    Article  CAS  Google Scholar 

  28. Kim D, Kang SH, Slater M, Rood S, Vaughey JT, Karan N, Balasubramanian M, Johnson CS (2011) Adv Energy Mater 1:333–336

    Article  CAS  Google Scholar 

  29. Nagarathinam M, Saravanan K, Han Phua EJ, Reddy MV, Chowdari BVR, Vittal JJ (2012) Angew Chem Int Ed 51:5866–5870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ESF (grant BG051PO001-3.3.06-0050). Thanks are due to Dr. Diana Nihtianova (Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kalapsazova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalapsazova, M., Stoyanova, R. & Zhecheva, E. Structural characterization and electrochemical intercalation of Li+ in layered Na0.65Ni0.5Mn0.5O2 obtained by freeze-drying method. J Solid State Electrochem 18, 2343–2350 (2014). https://doi.org/10.1007/s10008-014-2399-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2399-x

Keywords

Navigation