Skip to main content

Advertisement

Log in

Investigation of β-SiC as an anode catalyst support for PEM water electrolysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Because iridium is both expensive and scarce, it is essential to reduce the amount of IrO2 in the anode catalysts of polymer electrolyte membrane water electrolysers (PEMWEs). The potential of β-SiC to act as a catalyst support for PEMWE anodes was evaluated. To do so, a modified version of the Adams fusion method was used to prepare catalysts with IrO2 supported on β-SiC with a mass percentage of IrO2 of 20, 40, 50, 60, 70, 80, 90, and 100 %. The thin-film method was used for the electrochemical characterization of catalysts by cyclic and linear sweep voltammetry. The catalysts were further characterized by scanning electron microscopy/energy dispersive X-ray (SEM-EDX) analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and N2 adsorption (BET). Gas diffusion electrodes with the synthesized catalysts were prepared for tests in a laboratory PEMWE. A 10 % improvement over pure IrO2 was found in a supported catalyst with 80 wt.% IrO2. However, such a small improvement is not statistically significant. Therefore, the support may not influence the electrocatalytic activity of IrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 2. Production. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  2. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38(12):4901–4934

    Article  CAS  Google Scholar 

  3. Andolfatto F, Durand R, Michas A, Millet P, Stevens P (1994) Solid polymer electrolyte water electrolysis: electrocatalysis and long-term stability. Int J Hydrog Energy 19(5):421–427

    Article  CAS  Google Scholar 

  4. Ma L, Sui S, Zhai Y (2008) Preparation and characterization of Ir/TiC catalyst for oxygen evolution. J Power Sources 177(2):470–477

    Article  CAS  Google Scholar 

  5. Marshall AT, Haverkamp RG (2010) Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochim Acta 55(6):1978–1984

    Article  CAS  Google Scholar 

  6. Siracusano S, Baglio V, D’Urso C, Antonucci V, Aricò AS (2009) Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochim Acta 54(26):6292–6299

    Article  CAS  Google Scholar 

  7. Sui S, Ma L, Zhai Y (2009) Investigation on the proton exchange membrane water electrolyzer using supported anode catalyst. Asia Pac J Chem Eng 4(1):8–11

    Article  CAS  Google Scholar 

  8. Nikiforov AV, Tomás García AL, Petrushina IM, Christensen E, Bjerrum NJ (2011) Preparation and study of IrO2/SiC–Si supported anode catalyst for high temperature PEM steam electrolysers. Int J Hydrog Energy 36(10):5797–5805

    Article  CAS  Google Scholar 

  9. Wu X, Scott K (2011) RuO2 supported on Sb-doped SnO2 nanoparticles for polymer electrolyte membrane water electrolysers. Int J Hydrog Energy 36(10):5806–5810

    Article  CAS  Google Scholar 

  10. Mazúr P, Polonský J, Paidar M, Bouzek K (2012) Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis. Int J Hydrog Energy 37(17):12081–12088

    Article  Google Scholar 

  11. Polonský J, Petrushina IM, Christensen E, Bouzek K, Prag CB, Andersen JET, Bjerrum NJ (2012) Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers. Int J Hydrog Energy 37(3):2173–2181

    Article  Google Scholar 

  12. Xu J, Liu G, Li J, Wang X (2012) The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction. Electrochim Acta 59:105–112

    Article  CAS  Google Scholar 

  13. Stoyanova A, Borisov G, Lefterova E, Slavcheva E (2012) Oxygen evolution on Ebonex-supported Pt-based binary compounds in PEM water electrolysis. Int J Hydrog Energy 37(21):16515–16521

    Article  CAS  Google Scholar 

  14. De Pauli CP, Trasatti S (1995) Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts. J Electroanal Chem 396(1–2):161–168

    Article  Google Scholar 

  15. Wu X, Tayal J, Basu S, Scott K (2011) Nano-crystalline Rux Sn1 - x O2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers. Int J Hydrog Energy 36(22):14796e804

    Article  Google Scholar 

  16. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2005) Preparation and characterisation of nanocrystalline IrxSn 1-xO2 electrocatalytic powders. Mater Chem Phys 94(2–3):226–232

    Article  CAS  Google Scholar 

  17. Mayousse E, Maillard F, Fouda-Onana F, Sicardy O, Guillet N (2011) Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis. Int J Hydrog Energy 36(17):10474–10481

    Article  CAS  Google Scholar 

  18. Marshall AT, Sunde S, Tsypkin M, Tunold R (2007) Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int J Hydrog Energy 32(13):2320–2324

    Article  CAS  Google Scholar 

  19. Miao H, Ding C, Luo H (2003) Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method. Microelectron Eng 66(1–4):142–146

    Article  CAS  Google Scholar 

  20. Cruz JC, Rivas S, Beltran D, Meas Y, Ornelas R, Osorio-Monreal G, Ortiz-Frade L, Ledesma-García J, Arriaga LG (2012) Synthesis and evaluation of ATO as a support for Pt–IrO2 in a unitized regenerative fuel cell. Int J Hydrog Energy 37(18):13522–13528

    Article  CAS  Google Scholar 

  21. Hauf C, Kniep R, Pfaff G (1999) Preparation of various titanium suboxide powders by reduction of TiO2 with silicon. J Mater Sci 34(6):1287–1292

    Article  CAS  Google Scholar 

  22. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer, Berlin

    Book  Google Scholar 

  23. Adams R, Shriner RL (1923) Platinum oxide as a catalyst in the reduction of organic compounds. III. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate. J Am Chem Soc 45(9):2171–2179

    Article  CAS  Google Scholar 

  24. Scherrer P (1918) Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachrichten Göttinger Gesellschaft 2:98–100

    Google Scholar 

  25. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145(7):2354–2358

    Article  CAS  Google Scholar 

  26. Chen RS, Chang HM, Huang YS, Tsai DS, Chattopadhyay S, Chen KH (2004) Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates. J Cryst Growth 271(1–2):105–112

    Article  CAS  Google Scholar 

  27. da Silva LA, Alves VA, de Castro SC, Boodts JFC (2000) XPS study of the state of iridium, platinum, titanium and oxygen in thermally formed IrO2 + TiO2 + PtOX films. Colloids Surf A Physicochem Eng Asp 170(2–3):119–126

    Article  Google Scholar 

  28. Hara M, Asami K, Hashimoto K, Masumoto T (1983) An X-ray photoelectron spectroscopic study of electrocatalytic activity of platinum group metals for chlorine evolution. Electrochim Acta 28(8):1073–1081

    Article  CAS  Google Scholar 

  29. Roginskaya YE, Varlamova TV, Goldstein MD, Belova ID, Galyamov BS, Shifrina RR, Shepelin VA, Fateev VN (1991) Formation, structure and electrochemical properties of IrO2-RuO2 oxide electrodes. Mater Chem Phys 30(2):101–113

    Article  CAS  Google Scholar 

  30. Comninellis C, Vercesi GP (1991) Characterization of DSA®-type oxygen evolving electrodes: choice of a coating. J Appl Electrochem 21(4):335–345

    Article  CAS  Google Scholar 

  31. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2006) Electrochemical characterisation of IrxSn1 − xO2 powders as oxygen evolution electrocatalysts. Electrochim Acta 51(15):3161–3167

    Article  CAS  Google Scholar 

  32. Hu JM, Zhang JQ, Cao CN (2004) Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS. Int J Hydrog Energy 29(8):791–797

    Article  CAS  Google Scholar 

  33. De Pauli CP, Trasatti S (2002) Composite materials for electrocatalysis of O2 evolution: IrO2 + SnO2 in acid solution. J Electroanal Chem 538–539:145–151

    Article  Google Scholar 

  34. Da Silva LM, Boodts JFC, De Faria LA (2001) Oxygen evolution at RuO2(x) + Co3O4(1 − x) electrodes from acid solution. Electrochim Acta 46(9):1369–1375

    Article  Google Scholar 

  35. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14(5):397–426

    Article  CAS  Google Scholar 

  36. Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J Membr Sci 185(1):73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support is acknowledged from the Ministry of Industry and Trade of the Czech Republic (project no. FR-TI2/442) and Specific University Research (MSMT No. 20/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Polonský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polonský, J., Mazúr, P., Paidar, M. et al. Investigation of β-SiC as an anode catalyst support for PEM water electrolysis. J Solid State Electrochem 18, 2325–2332 (2014). https://doi.org/10.1007/s10008-014-2388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2388-0

Keywords

Navigation