A novel palladium nanoparticles-polyproline-modified graphite electrode and its application for determination of curcumin

Abstract

A novel-modified electrode has been developed, by electrodeposition of palladium nanoparticles (PdNps) on polypyroline film-coated (Poly(Pr)) graphite electrode. The modified electrode (PdNps/Poly(Pr)/GE) was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. SEM proved that the palladium nanoparticles were uniform distributed with an average particle diameter of 20–45 nm. A higher catalytic activity was obtained for curcumin oxidation using this new modified electrode (PdNps/Poly(Pr)/GE). The square wave voltammogram of curcumin in pH 2 phosphate buffer exhibited an anodic peak at 0.504 V. This oxidation peak current was found to be linearly related to curcumin concentrations in the ranges of 5.0 × 10−9 to 1.0 × 10−7 M with a detection limit of 1.2 × 10−9 M. This novel-modified electrode showed excellent sensitivity, compared with the existing reports about determination of curcumin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

References

  1. 1.

    Hernandez-Santos D, Diaz-Gonzales M, Gonzales-Garcia MB, Costa-Garcia A (2004) Enzymatic genosensor on streptavidin-modified screen-printed carbon electrodes. Anal Chem 76:6887–6893

    CAS  Article  Google Scholar 

  2. 2.

    Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    CAS  Article  Google Scholar 

  3. 3.

    Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    CAS  Article  Google Scholar 

  4. 4.

    Raj CR, Okajima T, Ohsaka T (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543:127–133

    CAS  Article  Google Scholar 

  5. 5.

    Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    CAS  Article  Google Scholar 

  6. 6.

    Diculescu VC, Chiorcea-Paquim AM, Corduneanu O, Oliveira Brett AM (2007) Palladium nanoparticles and nanowires deposited electrocemically:AFM and electrochemical characterization. J Solid State Electrochem 11:887–898

    CAS  Article  Google Scholar 

  7. 7.

    Sun Y, Wang HH (2007) Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl Phys Lett 90:213107–213109

    Article  Google Scholar 

  8. 8.

    Lin YH, Cui XL, Ye XR (2005) Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 7:267–274

    CAS  Article  Google Scholar 

  9. 9.

    Gao GY, Guo DJ, Li HL (2006) Electrocatalytic oxidation of formaldehyde on palladium nanoparticles supported on multi-walled carbon nanotubes. J Power Sources 162:1094–1098

    CAS  Article  Google Scholar 

  10. 10.

    Andreev VN (2006) Electrochemical behavior of single-carbon organic compounds on a composite nafion–polyaniline–palladium particle electrode in acid solutions. Russ J Electrochem 42:193–196

    CAS  Article  Google Scholar 

  11. 11.

    Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151–155

    CAS  Article  Google Scholar 

  12. 12.

    Zhang O, Yu H, Lu L, Wen Y, Duan X, Xu J (2013) Poly(thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine. Chin J Poly Sci 31(3):419–426

    CAS  Article  Google Scholar 

  13. 13.

    Liu Y, Huang J, Wang D, Hou H, You T (2010) Electrochemical determination of oxalic acid using palladium nanoparticle loaded carbon nanofiber modified electrode. Anal Methods 2:855–859

    CAS  Article  Google Scholar 

  14. 14.

    Naranchimeg O, Kim SK, Jeon S (2011) The modified electrode by PEDOP with MWCNTs-palladium nanoparticles for the determination of hydroquinone and catechol. Bull Korean Chem Soc 32:2771–2775

    Article  Google Scholar 

  15. 15.

    Lim SH, Wei J, Lin J, Li QT, You JK (2005) A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens Bioelectron 20:2341–2346

    CAS  Article  Google Scholar 

  16. 16.

    Chang Z, Fan H, Zhao K, Chen M, He P, Fang Y (2008) Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis 20:131–136

    CAS  Article  Google Scholar 

  17. 17.

    Liu Y, Zhang JJ, Hou WH, Zhu JJ (2008) A Pd/SBA-15 composite: synthesis, characterization and protein biosensing. Nanotechnology 19:135707–135714

    Article  Google Scholar 

  18. 18.

    Thiagarajan S, Yang RF, Chen SM (2009) Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. Bioelectrochem 75:163–169

    CAS  Article  Google Scholar 

  19. 19.

    Li J, Xie H, Li Y (2012) Fabrication of gold nanoparticles/polypyrrole composite-modified electrode for sensitive hydroxylamine sensor design. J Solid State Electrochem 16:795–802

    CAS  Article  Google Scholar 

  20. 20.

    Mailu SN, Waryo T, Ndangili PM, Ngece FR, Baleg AA, Baker PG, Iwuoha EI (2010) Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors 10:9449–9465

    CAS  Article  Google Scholar 

  21. 21.

    Chirea M, Pereira EM, Pereira CM, Silva F (2011) Charge transfer within multilayered films of gold nanorods. Biointerface Res Appl Chem 1:119–126

    CAS  Google Scholar 

  22. 22.

    Li J, Zhang X (2012) Fabrication of poly(aspartic acid)-nanogold modified electrode and its application for simultaneous determination of dopamin, ascorbic acid and üric acid. Am J Anal Chem 3:195–203

    CAS  Article  Google Scholar 

  23. 23.

    Muraviev DN (2005) Inter-matrix synthesis of polymer stabilized metal nanoparticles for sensor applications. Contrib Sci 3:19–32

    Google Scholar 

  24. 24.

    Yu AM, Chen HY (1997) Electrocatalytic oxidation of hydrazine at the poly(glutamic acid) chemically modified electrode and its amperometric determination. Anal Lett 30(3):599–607

    CAS  Article  Google Scholar 

  25. 25.

    Li Y, Liu X, Wei W (2011) Square wave voltammetry of for selective detection of dopamine using polyglycine modified carbon ionic liquid electrode. Electroanalysis 23:2832–2838

    CAS  Article  Google Scholar 

  26. 26.

    Cao Y, Liu X, Huang H, Zhang X, Zhang Z (2009) Electrocatalytic determination of dopamine in the presence of ascorbic acid by poly-l-proline and ferricyanide compound film modified electrode. Chem Res Chin Univ 25(6):827–831

    CAS  Google Scholar 

  27. 27.

    Luo L, Li F, Zhu L, Ding Y, Deng D (2012) Electrochemical sensing platform of natural estrogens based on the poly(L-proline)-ordered mesoporous carbon composite modified glassy carbon electrode. The 14th International Meeting on Chemical Sensors. Doi: 10.5162/IMCS2012/P1.1.12

  28. 28.

    Ma X, Chao Z (2008) Cyclic voltammetric determination of norepinephrine. J South Med Univ 28(8):1454–1457

    CAS  Google Scholar 

  29. 29.

    Ma Y, Yang Q, Li G, Xı Z, Yang X (2002) Electrocatalytic oxidation of formaldehyde on the proline film modified electrode. China Acad J Electrochem 8(2):207–212

    CAS  Google Scholar 

  30. 30.

    Zhou H, Beevers CS, Huang S (2011) Targets of curcumin. Curr Drug Targets 12:332–347

    CAS  Article  Google Scholar 

  31. 31.

    Ziyatdinova GK, Nizamova AM, Budnikov HC (2012) Voltammetric determination of curcumin in spices. J Anal Chem 67:591–594

    CAS  Article  Google Scholar 

  32. 32.

    Klawitter M, Quero L, Klasen J, Gloess AN, Klopprogge B, Hausmann O, Boos N, Wuertz K (2012) Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity. J Inflamm 9:29–44

    CAS  Article  Google Scholar 

  33. 33.

    Sharma K, Agrawal SS, Gupta M (2012) Development and validation of UV spectrophotometric method for the estimation of curcumin in bulk drug and pharmaceutical dosage forms. Int J Drug Dev & Res 4(2):375–380

    CAS  Google Scholar 

  34. 34.

    Gupta NK, Nahata A, Dixit VK (2010) Development of a spectrofluorimetric method for the determination of curcumin. Asian J Trad Med 5(1):12–18

    CAS  Google Scholar 

  35. 35.

    Modi G, Pitre KS (2010) Electrochemical analysis of natural chemopreventive agent (curcumin) in extracted sample and pharmaceutical formulation. Defence Sci J 60(3):255–258

    CAS  Article  Google Scholar 

  36. 36.

    Stanic Z, Voulgaropoulos A, Girousia S (2008) Electroanalytical study of the antioxidant and antitumor agent curcumin. Electroanalysis 20(11):1263–1266

    CAS  Article  Google Scholar 

  37. 37.

    Peng J, Nong K, Cen L (2012) Electropolymerization of acid chrome blue K on glassy carbon electrode for the determination of curcumin. J Chin Chem Soc 59(11):1415–1420

    CAS  Article  Google Scholar 

  38. 38.

    Barbier B, Pinson J, Desarmot G, Sanchez M (1990) Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composits. J Electrochem Soc 137(6):1757–1764

    CAS  Article  Google Scholar 

  39. 39.

    Chandrashekar BN, Kumara Swamy BE, Pandurangachar M, Sathisha TV, Sherigara BS (2011) Electropolymerization of l-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Colloids Surf B: Biointerfaces 88:413–418

    CAS  Article  Google Scholar 

  40. 40.

    Yao JK, Shao HB (2005) Study of the electrostatic, interaction of lysine monolayer on glassy carbon electrodes using the electrochemical method. J Chin Chem Soc 52(2):363–368

    CAS  Google Scholar 

  41. 41.

    Corduneanu O, Diculescu VC, Chiorcea-Paquim AM, Oliveira-Brett AM (2008) Shape-controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes. J Electroanal Chem 624:97–108

    CAS  Article  Google Scholar 

  42. 42.

    Chen G, Wang Z, Yang T, Huang D, Xia D (2006) Electrocatalytic hydrogenation of 4 chlorophenol on the glassy carbon electrode modified by composite polypyrrole/palladium film. J Phys Chem B 110:4863–4868

    CAS  Article  Google Scholar 

  43. 43.

    Hajos ZG, Parrish DR (1974) Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem 39(12):1615–1621

    CAS  Article  Google Scholar 

  44. 44.

    Abidian MR, Martin DC (2008) Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9):1273–1283

    CAS  Article  Google Scholar 

  45. 45.

    Tlili C, Hou Y, Youssoufi HK, Ponsonnet L, Martelet C, Errachid A, Renault NJ (2005) Impedance-probing of mixed amphiphile-antibody films transferred onto silver electrodes. Sens Lett 2:1–6

    Google Scholar 

  46. 46.

    Zheng JP, Goonetilleke PC, Pettit CM, Roy D (2010) Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM] + [EtSO4](-). Talanta 81:1045–1055

    CAS  Article  Google Scholar 

  47. 47.

    Ding SJ, Chang BW, Wu CC, Lai MF, Chang HC (2005) Electrochemical evaluation of avidin–biotin interaction on self-assembled gold electrodes. Electrochim Acta 50(18):3660–3666

    CAS  Article  Google Scholar 

  48. 48.

    Mahato N, Singh MM (2011) Investigation of passive film properties and pitting resistance of AISI 316 in aqueous ethanoic acid containing chloride ions using electrochemical impedance spectroscopy(EIS). Port Electrochim Acta 29(4):233–251

    CAS  Article  Google Scholar 

  49. 49.

    Hafaid I, Gallouz A, Hassen VM, Abdelghani A, Sassi Z, Bessueille F, Jaffrezic-Renault N (2009) Sensitivity improvement of an impedimetric immunosensor using functionalized iron oxide nanoparticles. J Sens 2009:1–12

    Article  Google Scholar 

  50. 50.

    Maouche N, Nessark B (2011) Cyclic voltammetry and impedance spectroscopy behavior studies of polyterthiophene modified electrode. Int J Electrochem 2011:1–5

    Article  Google Scholar 

  51. 51.

    Shervedani RK, Alinajafi-Najafabadi HA (2011) Electrochemical determination of dopamine on a glassy carbon electrode modified by using nanostructure ruthenium oxide hexacyanoferrate/ruthenium hexacyanoferrate thin film. Int J Electrochem 2011:1–11

    Article  Google Scholar 

  52. 52.

    Liu X, Luo L, Ding Y, Ye D (2011) Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of l-tryptophan. Bioelectrochemistry 82:38–45

    CAS  Article  Google Scholar 

  53. 53.

    Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101

    CAS  Article  Google Scholar 

  54. 54.

    Zhou ZY, Kang X, Song Y, Chen S (2011) Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid. Chem Commun 47:6075–6077

    CAS  Article  Google Scholar 

  55. 55.

    Manaia MAN, Diculescu VC, Gil ES, Oliveria-Brett AM (2012) Guaicolic spices curcumin and capsaicin electrochemical oxidation behaviour at a glassy carbon electrode. J Electroanal Chem 682:83–89

    CAS  Article  Google Scholar 

  56. 56.

    Lungu A, Sandu I, Boscornea C, Tomas S, Mihailciuc C (2010) Electrochemical study of curcumin and bisdemethoxycurcumin on activated glassy carbon electrode. Rev Roum Chim 55(2):109–115

    CAS  Google Scholar 

  57. 57.

    Mojovic Z, Bankovic P, Milutinovic-Nikoli A, Dostanic J, Jovic-Jovicic N, Jovanovic D (2009) Al, Cu-pillared clays as catalysts in environmental protection. Chem Engineering J 154:149–155

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Gazi University Scientific Research Projects Unit (project no. 05/2012-28).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Semiha Çakır.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arslan, E., Çakır, S. A novel palladium nanoparticles-polyproline-modified graphite electrode and its application for determination of curcumin. J Solid State Electrochem 18, 1611–1620 (2014). https://doi.org/10.1007/s10008-014-2382-6

Download citation

Keywords

  • Modified electrode
  • Polyproline
  • Palladium nanoparticles
  • Electrodeposition
  • Curcumin