Skip to main content
Log in

Clopyralid detection by using a molecularly imprinted electrochemical luminescence sensor based on the “gate-controlled” effect

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new strategy for trace analysis was proposed by preparing a molecularly imprinted polymer (MIP) sensor. The template molecules of clopyralid were determined based on “gate-controlled” electrochemiluminescence (ECL) measurement. A dense polymer film was electropolymerized on an electrode surface to fabricate the MIP–ECL sensor. The process of template elution and rebinding acted as a gate to control the flux of probes, which pass through the cavities and react on the electrode surface. ECL measurement was conducted in the luminol–H2O2 system. A linear relationship between ECL intensity and clopyralid concentrations in the range of 1 × 10−9 mol/L to 8 × 10−7 mol/L exists, and the detection limit was 3.7 × 10−10 mol/L. The prepared sensor was used to detect clopyralid in vegetables. Recoveries of 97.9 % to 102.9 % were obtained. The sensor showed highly selective recognition, high sensitivity, good stability, and reproducibility for clopyralid detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thorsness KB, Messersmith CG (1991) Clopyralid influences rotational crops. Weed Technol 5:159–164

    CAS  Google Scholar 

  2. Ahmad R, Rahman A, Holland PT, McNaughton DE (2003) Improved analytical procedure for determination of clopyralid in soil using gas chromatography. Bull Environ Contam Toxicol 71:414–421

    Article  CAS  Google Scholar 

  3. Schütz S, Weißbecker B, Hummel HE (1996) Gas chromatography–mass spectrometry analysis of the herbicide clopyralid in differentially cultivated soils. Environ Toxicol Chem 15:249–252

    Google Scholar 

  4. Gu B, Meldrum B, McCabe T, Phillips S (2012) Enhancing concentration and mass sensitivities for liquid chromatography trace analysis of clopyralid in drinking water. J Sep Sci 35:185–192

    Article  CAS  Google Scholar 

  5. Schütz S, Vedder H, Düring RA, Weissbecker B, Hummel HE (1996) Analysis of the herbicide clopyralid in cultivated soils. J Chromatogr A 754:265–271

    Article  Google Scholar 

  6. Fillâtre Y, Rondeau D, Bonnet B, Daguin A, Jadas-Hécart A, Communal PY (2011) Multiresidue analysis of multiclass pesticides in lavandin essential oil by LC/MS/MS using the scheduled selected reaction monitoring mode. Anal Chem 83:109–117

    Article  Google Scholar 

  7. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed 34:1812–1832

    Article  CAS  Google Scholar 

  8. Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  9. Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14

    Article  CAS  Google Scholar 

  10. Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2, 4, 6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25:1166–1172

    Article  CAS  Google Scholar 

  11. Dickert FL, Tortschanoff M, Bulst WE, Fischerauer G (1999) Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal Chem 71:4559–4563

    Article  CAS  Google Scholar 

  12. Wang YT, Zhang ZQ, Jain V, Yi JJ, Mueller S, Sokolov J, Liu ZX, Levon K, Rigas B, Rafailovich MH (2010) Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sens Actuators B 146:381–387

    Article  CAS  Google Scholar 

  13. Miyata T, Hayashi T, Kuriu Y, Uragami T (2012) Responsive behavior of tumor-marker-imprinted hydrogels using macromolecular cross-linkers. J Mol Recognit 25:336–343

    Article  CAS  Google Scholar 

  14. Aghaei A, Milani Hosseini MR, Najafi M (2010) A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochim Acta 55:1503–1508

    Article  CAS  Google Scholar 

  15. Najafi M, Baghbanan AA (2012) Capacitive chemical sensor for thiopental assay based on electropolymerized molecularly imprinted polymer. Electroanalysis 24:1236–1242

    Article  CAS  Google Scholar 

  16. Sergeyeva TA, Piletsky SA, Brovko AA, Slinchenko EA, Sergeeva LM, El’skaya AV (1999) Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal Chim Acta 392:105–111

    Article  CAS  Google Scholar 

  17. Li JP, Li YP, Zhang Y, Wei G (2012) Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal Chem 84:1888–1893

    Article  CAS  Google Scholar 

  18. Li JP, Jiang FY, Wei XP (2010) Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination. Anal Chem 82:6074–6078

    Article  CAS  Google Scholar 

  19. Song W, Chen Y, Xu J, Yang XR, Tian DB (2010) Dopamine sensor based on molecularly imprinted electrosynthesized polymers. J Solid State Electrochem 14:1909–1914

    Google Scholar 

  20. Liang R, Zhang R, Qin W (2009) Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sens Actuators B 141:544–550

    Article  CAS  Google Scholar 

  21. Xue C, Han Q, Wang Y, Wu JH, Wen TT, Wang RY, Hong JL, Zhou XM, Jiang HJ (2013) Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens Bioelectron 49:199–203

    Article  CAS  Google Scholar 

  22. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  23. Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37:1534–1539

    CAS  Google Scholar 

  24. Li JP, Li SH, Wei XP, Tao HL, Pan HC (2012) Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3. Anal Chem 84:9951–9955

    Article  CAS  Google Scholar 

  25. Li X, Zhang LM, Wei XP, Li JP (2013) A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate-controlled catalytic electrooxidation of H2O2 on magnetic nano-NiO. Electroanalysis 25:1286–1293

    Article  CAS  Google Scholar 

  26. Yoshimi Y, Ohdaira R, Iiyama C, Sakai K (2001) “Gate effect” of thin layer of molecularly-imprinted poly (methacrylic acid-co-ethyleneglycol dimethacrylate). Sens Actuators B 73:49–53

    Article  CAS  Google Scholar 

  27. Sekine S, Watanabe Y, Yoshimi Y, Hattori K, Sakai K (2007) Influence of solvents on chiral discriminative gate effect of molecularly imprinted poly (ethylene glycol dimethacrylate-co-methacrylic acid). Sens Actuators B 127:512–517

    Article  CAS  Google Scholar 

  28. Zhao P, Wang L, Chen L, Pan C (2011) Residue dynamics of clopyralid and picloram in rape plant rapeseed and field soil. Bull Environ Contam Toxicol 86:78–82

    Article  CAS  Google Scholar 

  29. Zhang L, Lian J (2008) The electrochemical polymerization of o-phenylenediamine on L-tyrosine functionalized glassy carbon electrode and its application. J Solid State Electrochem 12:757–763

    Article  CAS  Google Scholar 

  30. Razmi H, Habibi E (2009) Electrocatalytic oxidation of methanol on carbon ceramic electrode modified by platinum nanoparticles incorporated in poly (o-phenylenediamine) film. J Solid State Electrochem 13:1897–1904

    Article  CAS  Google Scholar 

  31. Gajendran P, Saraswathi R (2013) Electrocatalytic performance of poly (o-phenylenediamine)-Pt–Ru nanocomposite for methanol oxidation. J Solid State Electrochem 17:2741–2747

    Article  CAS  Google Scholar 

  32. Sakura S (1992) Electrochemiluminescence of hydrogen peroxide–luminol at a carbon electrode. Anal Chim Acta 262:49–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 21375031 and No. 21165007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Li, J., Yin, W. et al. Clopyralid detection by using a molecularly imprinted electrochemical luminescence sensor based on the “gate-controlled” effect. J Solid State Electrochem 18, 1815–1822 (2014). https://doi.org/10.1007/s10008-014-2380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2380-8

Keywords

Navigation