Skip to main content

Advertisement

Log in

Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc = 1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M = Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arico AS, Srinvasan S, Antonucci V (2001) Fuel Cells 1:133–166

    Article  CAS  Google Scholar 

  2. Appleby AJ (1990) J Power Sources 29:3–11

    Article  CAS  Google Scholar 

  3. Maiyalagan T, Sivakumar P (2010) Mater Sci Forum 657:143–189

    Article  CAS  Google Scholar 

  4. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  5. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilsom, Garzon MF, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  6. Gonzalez ER (2000) Quim Nova 23:262–266

    Article  CAS  Google Scholar 

  7. Wendt H, Gotz M, Linardi M (2000) Quim Nova 23:538–546

    Article  CAS  Google Scholar 

  8. Spinace EV, Neto AO, Franco EG, Linardi M, Gonzalez ER (2004) Quim Nova 27:648–654

    Article  CAS  Google Scholar 

  9. Wendt H, Spinace EV, Neto AO, Linardi M (2005) Quim Nova 28:1066–1075

    Article  CAS  Google Scholar 

  10. Lamy C, Lima A, Lerhum V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  11. Camara GA, de Lima RB, Iwasita T (2005) J Electroanal Chem 585:128–131

    Article  CAS  Google Scholar 

  12. Du W, Wang Q, Saxner D, Deskins NA, Su D, Krzanowski JE, Frenkel AI, Teng X (2011) J Am Chem Soc 133:15172–15183

    Article  CAS  Google Scholar 

  13. Gomes JF, Busson B, Tadjeddine A, Tremiliosi-Filho G (2008) Electrochim Acta 53:6899–6703

    Article  CAS  Google Scholar 

  14. Iwasita T, Pastor E (1994) Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  15. Lima FHB, Gonzalez ER (2008) Electrochim Acta 53:2963–2971

    Article  CAS  Google Scholar 

  16. Otomo J, Nishida S, Takahashi H, Nagamoto H (2008) J Electroanal Chem 615:84–90

    Article  CAS  Google Scholar 

  17. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) J Electroanal Chem 563:81–89

    Article  CAS  Google Scholar 

  18. Neto AO, Dias RR, Tusi MM, Linardi M, Spinace EV (2007) J Power Sources 166:87–91

    Article  Google Scholar 

  19. Velazquez-Palenzuela A, Brillas E, Arias C, Centellas F, Garrido JA, Rodríguez RM, Cabot P-L (2013) J Power Sources 225:163–171

    Article  CAS  Google Scholar 

  20. Almeida TS, Palma LM, Leonello PH, Morais C, Kokoh KB, De Andrade AR (2012) J Power Sources 215:53–62

    Article  CAS  Google Scholar 

  21. Ammam M, Easton EB (2012) J Power Sources 215:188–198

    Article  CAS  Google Scholar 

  22. Uchida M, Aoyama Y, Tanabe N, Yanagihara N, Eda N, Ohta A (1995) J Electrochem Soc 142:2572–2776

    Article  CAS  Google Scholar 

  23. Antolini E (2007) Appl Catal B Environ 74:324–336

    Article  CAS  Google Scholar 

  24. Maiyalagan T, Viswanathan B, Varadaraju UVJ (2006) Nanosci Nanotechnol 6:2067–2071

    Article  CAS  Google Scholar 

  25. Ding J, Chan K, Ren J, Xiao F (2005) Electrochim Acta 50:3131–3141

    Article  CAS  Google Scholar 

  26. Joo SH, Pak C, You DJ, Lee S, Lee HI, Kim JM, Chang H, Seung D (2006) Electrochim Acta 52:1618–1626

    Article  CAS  Google Scholar 

  27. Lin M, Lo M, Mou C (2009) J Phys Chem C 113:16158–16168

    Article  CAS  Google Scholar 

  28. Salgado JRC, Alcaide F, Alvarez F, Calvillo L, Lazaro MJ, Pastor E (2010) J Power Sources 195:4022–4029

    Article  CAS  Google Scholar 

  29. Maiyalagan T, Alaje TO, Scott K (2012) J Phys Chem C 116:2630–2638

    Article  CAS  Google Scholar 

  30. Liu ZL, Ling XY, Su XD, Lee JY (2004) J Phys Chem B 108:8234–8240

    Article  CAS  Google Scholar 

  31. Nores-Pondal FJ, Vilella IMJ, Troiani H, Granada M, de Miguel SR, Scelza OA, Corti HR (2009) Int J Hydrog Energy 34:8193–8203

    Article  CAS  Google Scholar 

  32. Vidal-Iglesias FJ, Al-Akl A, Watson DJ, Attard GA (2006) Electrochem Commun 8:1147–1150

    Article  CAS  Google Scholar 

  33. Colmati F, Antolini E, Gonzalez ER (2007) Appl Catal B 73:106–115

    Article  CAS  Google Scholar 

  34. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714

    Article  CAS  Google Scholar 

  35. Lin WB, Wang ZY, Ma L (1999) J Am Chem Soc 121:11249–11250

    Article  CAS  Google Scholar 

  36. Liu B, Shioyama H, Akita T, Xu Q (2008) J Am Chem Soc 130:5390–3502

    Article  CAS  Google Scholar 

  37. Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) Chem Mater 24:464–470

    Article  CAS  Google Scholar 

  38. Liu B, Shioyama H, Jiang H, Zhang X, Xu Q (2010) Carbon 48:456–463

    Article  CAS  Google Scholar 

  39. Yuan D, Chen J, Tan S, Xia N, Liu Y (2009) Electrochem Commun 11:1191–1194

    Article  CAS  Google Scholar 

  40. Hu J, Wang H, Gao Q, Guo H (2010) Carbon 48:3599–3606

    Article  CAS  Google Scholar 

  41. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Tetrahedron 64:8553–8557

    Article  CAS  Google Scholar 

  42. Chen W, Zhao J, Jim YJ, Liu Z (2005) Mater Chem Phys 91:124–129

    Article  CAS  Google Scholar 

  43. Zhu H, Liu Y, Shen L, Wei Y, Guo Z, Wang H, Han K, Chang Z (2010) Int J Hydrog Energy 35:3125–312

    Article  CAS  Google Scholar 

  44. Bonet F, Delmas V, Grugeon S, Urbina RH, Silvert P-Y, Tekaia-Elhsissen K (1999) Nanostruct Mater 11:1277–1284

    Article  CAS  Google Scholar 

  45. Liu ZF, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) J Phys Chem C 111:14223–14229

    Article  CAS  Google Scholar 

  46. Xu C, Li Q, Liu Y, Wang J, Geng H (2012) Langmuir 28:1886–1892

    Article  CAS  Google Scholar 

  47. Zeng J, Zhao Z, Lee JY, Shen PK, Song S (2007) Electrochim Acta 52:3673–3679

    Article  CAS  Google Scholar 

  48. Luo B, Yan X, Chen J, Xu S, Xue Q (2013) Int J Hydrog Energy 38:13011–13016

    Article  CAS  Google Scholar 

  49. Girishikumar G, Hall TD, Vinodgopal K, Kamat PV (2006) J Phys Chem B 110:107–114

    Article  Google Scholar 

  50. Lim D-H, Choi D-H, Lee W-D, Lee H-I (2009) Appl Catal B 89:484–493

    Article  CAS  Google Scholar 

  51. Simoes FC, dos Anjos DM, Vigier F, Leger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KB (2007) J Power Sources 167:1–10

    Article  CAS  Google Scholar 

  52. Almeida TS, Palmaa LM, Leonello PH, Morais C, Kokoh KB, De Andrade AR (2012) J Power Sources 215:53–62

    Article  CAS  Google Scholar 

  53. Liu Z, Ling XY, Su X, Lee JY, Gan LM (2005) J Power Sources 149:1–7

    Article  Google Scholar 

  54. Antolini E, Colmati F, Gonzalez ER (2007) Electrochem Commun 9:398–404

    Article  CAS  Google Scholar 

  55. Godoi DRM, Perez J, Villullas HM (2010) J Power Sources 195:3394–3401

    Article  CAS  Google Scholar 

  56. Guo S, Sun S (2012) J Am Chem Soc 134:2492–2495

    Article  CAS  Google Scholar 

  57. Liu ZL, Guo B, Hong L, Lim TH (2006) Electrochem Commun 8:83–90

    Article  CAS  Google Scholar 

  58. Bonesi A, Garaventa G, Triaca WE, Castro Luna AM (2008) Int J Hydrog Energy 33:3499–3501

    Article  CAS  Google Scholar 

  59. Raghuveer V, Manthiram A (2004) Electrochem Solid-State Lett 7:336

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Higher Education Commission (HEC) of Pakistan (no. 20-1638/R&D/09/2900). The authors thank Dr. Dalaver Hussain Anjum (KAUST Saudi Arabia) for higher-resolution TEM and SAED analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Badshah or Muhammad Arif Nadeem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, I.A., Badshah, A., Haider, N. et al. Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5. J Solid State Electrochem 18, 1545–1555 (2014). https://doi.org/10.1007/s10008-013-2377-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2377-8

Keywords

Navigation