Advertisement

Journal of Solid State Electrochemistry

, Volume 18, Issue 4, pp 1111–1116 | Cite as

Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries

  • Yongguang Zhang
  • Yan Zhao
  • Zhumabay Bakenov
  • Denise Gosselink
  • P. Chen
Original Paper

Abstract

A gel polymer electrolyte (GPE) was developed by trapping 1 M solution of lithium hexafluorophosphate (LiPF6) in organic carbonate mixture in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/montmorillonite nanoclay (PVDF-HFP/PMMA/MMT). The physical and electrochemical properties of the resulting gel polymer electrolyte were investigated. AC impedance spectroscopy revealed that the ionic conductivity of gel polymer electrolyte containing 5 wt% MMT attains a maximum value of 3.06 × 10−3 S cm−1 at room temperature. Li/S cells assembled with the GPE-delivered reversible discharge capacities of 1,418 and 1,071 mAh g−1 in the first and 100th cycles at 0.1 C, respectively, along with high coulombic efficiency (about 100 %) over 100 cycles. The excellent cycle performance was attributed to the suppression of shuttle effect by the gel polymer electrolyte leading to the higher sulfur utilization in the cell. Even at a high C rate (1 C), the system still delivered 492 mAh g−1 specific discharge capacity, demonstrating the good ionic conductivity of the GPE.

Keywords

Gel polymer electrolyte Lithium/sulfur polymer battery Nanostructured sulfur cathode Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/montmorillonite nanoclay (PVDF-HFP/PMMA/MMT) polymer matrix 

Notes

Acknowledgments

This research was financially supported by Positec Ltd., the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Foundation for Innovation (CFI), and the Canada Research Chairs (CRC) program. One of the authors (YZ) thanks the China Scholarship Council for Study Abroad Scholarship.

References

  1. 1.
    Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics 225:604–607CrossRefGoogle Scholar
  2. 2.
    Ryou MH, Lee YM, Cho KY, Han GB, Lee JN, Lee DJ, Choi JW, Park JK (2012) A gel polymer electrolyte based on initiator-free photopolymerization for lithium secondary batteries. Electrochim Acta 60:23–30CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Zhang Y, Bakenov Z, Chen P (2013) Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics 234:40–45CrossRefGoogle Scholar
  4. 4.
    Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49:2371–2374CrossRefGoogle Scholar
  5. 5.
    Gentili V, Panero S, Reale P, Scrosati B (2007) Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. J Power Sources 170:185–190CrossRefGoogle Scholar
  6. 6.
    Panero S, Scrosati B (2000) Gelification of liquid-polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J Power Sources 90:13–19CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Zhang Y, Gosselink D, Doan TNL, Sadhu M, Cheang HJ, Chen P (2012) Polymer electrolytes for lithium/sulfur batteries. Membranes 2:553–564CrossRefGoogle Scholar
  8. 8.
    Bakenov Z, Nakayama M, Wakihara M (2007) A nonflammable lithium polymer battery with high performance for elevated temperature applications. Electrochem Solid-State Lett 10:A208–A211CrossRefGoogle Scholar
  9. 9.
    Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364CrossRefGoogle Scholar
  10. 10.
    Shubha N, Prasanth R, Hoon H, Srinivasan M (2013) Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)-layered clay nanocomposite fibrous membranes for lithium ion batteries. Mater Res Bull 48:526–537CrossRefGoogle Scholar
  11. 11.
    Deka M, Kumar A (2010) Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes. Electrochim Acta 55:1836–1842CrossRefGoogle Scholar
  12. 12.
    Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM, Gentle IR (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. Phys Chem Chem Phys 14:8703–8710CrossRefGoogle Scholar
  13. 13.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  14. 14.
    Hassoun J, Sun YK, Scrosati B (2011) Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J Power Sources 196:343–348CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Zhao Y, Sun KEK, Chen P (2011) Development in lithium/sulfur secondary batteries. Open Mater Sci J 5:215–221CrossRefGoogle Scholar
  16. 16.
    Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J Mater Chem A 1:295–301CrossRefGoogle Scholar
  18. 18.
    Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX, Huang YH (2013) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1:1716–1723CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Malik M, Paron T, Chen P (2012) One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J Power Sources 208:1–8CrossRefGoogle Scholar
  20. 20.
    Wang W, Li GC, Wang Q, Li GR, Ye SH, Gao XP (2013) Sulfur-polypyrrole/graphene multi-composites as cathode for lithium-sulfur battery. J Electrochem Soc 160:A805–A810CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technol 235:248–255CrossRefGoogle Scholar
  22. 22.
    Ding B, Yuan C, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem-Eur J 19:1013–1019CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries. J Power Sources 241:517–521CrossRefGoogle Scholar
  24. 24.
    Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348CrossRefGoogle Scholar
  25. 25.
    Xiong S, Xie K, Diao Y, Hong X (2012) Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries. Electrochim Acta 83:78–86CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zhao Y, Bakenov Z, Babaa MR, Konarov A, Ding C, Chen P (2013) Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries. J Electrochem Soc 160:A1194–A1198CrossRefGoogle Scholar
  27. 27.
    Wang J, Liu L, Ling ZJ, Yang J, Wan CR, Jiang CY (2003) Polymer lithium cells with sulfur composites as cathode materials. Electrochim Acta 48:1861–1867CrossRefGoogle Scholar
  28. 28.
    Kim KM, Park NG, Ryu KS, Chang SH (2006) Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim Acta 51:5636–5644CrossRefGoogle Scholar
  29. 29.
    Sivakumar M, Subadevi R, Rajendran S, Wu HC, Wu NL (2007) Compositional effect of PVdF-PEMA blend gel polymer electrolytes for lithium polymer batteries. Eur Polym J 43:4466–4473CrossRefGoogle Scholar
  30. 30.
    Qian XM, Gu NY, Cheng ZL, Yang XR, Wang EK, Dong SJ (2001) Impedance study of (PEO)10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRefGoogle Scholar
  31. 31.
    Kottegoda IRM, Bakenov Z, Ikuta H, Wakihara M (2005) Stability of lithium polymer battery based on substituted spinel cathode and PEG-borate ester/PC plasticized polymer electrolyte. J Electrochem Soc 152:А1533–А1538CrossRefGoogle Scholar
  32. 32.
    Bandeira MCE, Franco CV, Martini E (1999) Electrochemical impedance spectroscopy of poly{pyrrole-trans-[(RuCl2(pmp)4)]} copolymer films deposited on platinum electrodes. J Solid State Electrochem 3:210–214CrossRefGoogle Scholar
  33. 33.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462CrossRefGoogle Scholar
  34. 34.
    Materials for Li-ion batteries and double layer capacitors (2009) Merck KGaA, Darmstadt., www.merck-chemicals.com. Accessed Oct 2009
  35. 35.
    Isken P, Winter M, Passerini S, Lex-Balducci A (2013) Methacrylate based gel polymer electrolyte for lithium-ion batteries. J Power Sources 225:157–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yongguang Zhang
    • 1
  • Yan Zhao
    • 1
  • Zhumabay Bakenov
    • 2
  • Denise Gosselink
    • 1
  • P. Chen
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.School of EngineeringNazarbayev UniversityAstanaKazakhstan

Personalised recommendations