Skip to main content
Log in

Synthesis and electrochemical characterization of sol–gel-derived RuO2/carbon nanotube composites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol–gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction, and cyclic voltammetry. SEM results showed that the length of the carbon nanotubes varied with reaction time, and in this research, it was maintained around 9 μm with a diameter about 100 nm. Electrochemical analysis revealed that optimum sol concentration and heat treatment temperature to meet the best pH sensing response were 0.1 M RuCl3 sol and 200 °C, respectively. Moreover, the obtained electrode represented a linear and near-Nernstian response (about −63 mV/pH) throughout the whole pH range (2–12) of Britton–Robinson buffer solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. sccm = standard cubic centimeter per minute

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Kim NS, Lee YT, Park J (2003) Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines. J Phys Chem B 2:9249–9255

    Article  Google Scholar 

  3. Lee YT, Park J (2002) Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800-1100 °C. J Phys Chem B 106:7614–7618

    Article  CAS  Google Scholar 

  4. Sun Z, Liu Z, Han B, Miao S, Du J, Miao Z (2006) Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon 44:888–893

    Article  CAS  Google Scholar 

  5. Chul Y, Woon D, Jae T, Jin C, Hee Y (2001) Growth mechanism of vertically aligned carbon nanotubes on silicon substrates. Synth Met 117:81–86

    Article  Google Scholar 

  6. Zhang X (2002) Rapid growth of well-aligned carbon nanotube arrays. Chem Phys Lett 362:285–290

    Article  CAS  Google Scholar 

  7. Weber L, Ritter U, Scharff P (2009) Electrochemical characteristics of well-aligned MWCNT array electrodes. Fuller Nanotub Car N 17:548–559

    Article  CAS  Google Scholar 

  8. Lee CJ (2000) Growth and field electron emission of vertically aligned multiwalled carbon nanotubes. Chem Phys Lett 326:175–180

    Article  CAS  Google Scholar 

  9. Bethune DS, Kiang CH, De vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  10. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Hee Lee Y, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  CAS  Google Scholar 

  11. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Controlled production of aligned-nanotube bundles. Nature 388:52–55

    Article  CAS  Google Scholar 

  12. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

    Article  CAS  Google Scholar 

  13. Masarapu C, Wei B (2007) Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates. Langmuir 23:9046–9049

    Article  CAS  Google Scholar 

  14. Xu B, Zhang WD (2010) Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor. Electrochim Acta 55:2859–2864

    Article  Google Scholar 

  15. Liao YH, Chou JC (2008) Drift and hysteresis characteristics of drug sensors based on ruthenium dioxide membrane. Sensors 8:5386–5396

    Article  CAS  Google Scholar 

  16. Liao Y, Chou J (2008) Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system. Sensors Actuators B: Chem 128:603–612

    Article  CAS  Google Scholar 

  17. Walker J, King RB, Tannenbaum R (2007) Sol–gel synthesis of hydrous ruthenium oxide nanonetworks from 1,2-epoxides. J Solid State Chem 180:2290–2297

    Article  CAS  Google Scholar 

  18. Mcmurray HN, Douglas P, Abbot D (1995) Novel thick-film pH sensors based on ruthenium dioxide-glass composites. Sensors Actuators B 28:9–15

    Article  CAS  Google Scholar 

  19. Zhuiykov S (2008) Morphology and sensing characteristics of nanostructured RuO2 electrodes for integrated water quality monitoring sensors. Electrochem Commun 10:839–843

    Article  CAS  Google Scholar 

  20. Mihell JA, Atkinson JK (1998) Planar thick-film pH electrodes based on ruthenium dioxide hydrate. Sensors Actuators B: Chem 48:505–511

    Article  CAS  Google Scholar 

  21. Huang W, Cao H, Deb S, Chiao M, Chiao JC (2011) A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 169:1–11

    Article  CAS  Google Scholar 

  22. Arshak K, Gill E, Arshak A, Korostynska O (2007) Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors. Sensors Actuators B: Chem 127:42–53

    Article  CAS  Google Scholar 

  23. Olthuis W, Robben MAM, Bergveld P, Bos M, Van Der Linden WE (1990) pH sensor properties of electrochemically grown iridium oxide. Sensors Actuators B: Chem 2:247–256

    Article  CAS  Google Scholar 

  24. Hendrikse J, Olthuis W, Bergveld P (1998) A method of reducing oxygen induced drift in iridium oxide pH sensors. Sensors Actuators B: Chem 53:97–103

    Article  CAS  Google Scholar 

  25. Pasztor K, Sekiguchi A, Shimo N, Kitamura N, Masuhara H (1993) Electrochemically-deposited Ru02 films as pH sensors. Sensors Actuators B: Chem 14:561–562

    Article  CAS  Google Scholar 

  26. Siavash Moakhar R, Imanieh I, Ghorbani M, Dolati A (2012) Study of the effect of frequency in pulse electrodeposition on Au-Ni from cyanide-citrate electrolyte by the aim of experiment. Adv Mater Res 410:377–381

    Article  Google Scholar 

  27. Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433

    Article  CAS  Google Scholar 

  28. Zhang WD, Wen Y, Tjiu WC, Xu GQ, Gan LM (2002) Growth of vertically aligned carbon-nanotube array on large area of quartz plates by chemical vapor deposition. Appl Phys A Mater Sci Process 422:419–422

    Article  Google Scholar 

  29. Ren ZF (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    Article  CAS  Google Scholar 

  30. Kim NS, Lee YT, Park J (2002) Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J Phys Chem B 106:9286–9290

    Article  CAS  Google Scholar 

  31. Melechko AV (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:1–39

    Article  Google Scholar 

  32. Jin C, Woon D, Jae T, Chul Y, Soo Y, Hee Y, Bong W, Sung N, Park G, Min J (1999) Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 312:461–468

    Article  Google Scholar 

  33. Zhang WD, Wen Y, Min S, Tjiu WC, Qin G, Ming L (2002) Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40:1981–1989

    Article  CAS  Google Scholar 

  34. Juang ZY, Chien IP, Lai JF, Lai TS, Tsai CH (2004) The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method. Diamond Relat Mater 13:1203–1209

    Article  CAS  Google Scholar 

  35. Kim SG, Kim SY, Lee H (2011) Effect of ammonia gas etching on growth of vertically aligned carbon nanotubes/nanofibers. Trans Nonferrous Met Soc China 21:s130–s134

    Article  Google Scholar 

  36. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  37. Wang X, You Z, Ruan D (2006) Hydrous ruthenium oxide with high rate pseudo-capacitance prepared by a new sol–gel process. J Chem Phys 19:341–346

    CAS  Google Scholar 

  38. Fang W, Huang J, Chen L, Su YO, Chen K (2006) Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides. J Power Sources 160:1506–1510

    Article  CAS  Google Scholar 

  39. Park B, Lokhande CD, Park H, Jung K, Joo O (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources 134:148–152

    Article  CAS  Google Scholar 

  40. Zhuiykov S (2009) Morphology of Pt-doped nanofabricated RuO2 sensing electrodes and their properties in water quality monitoring sensors. Sensors Actuators B: Chem 136:248–256

    Article  CAS  Google Scholar 

  41. Fog A, Buck RP (1984) Electronic semiconducting oxides as pH sensors. Sensors Actuators 5:137–149

    Article  CAS  Google Scholar 

  42. Zoubov N, Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon, Oxford

    Google Scholar 

  43. Ramani M, White RE (2001) Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J Electrochem Soc 148:A374–A380

    Article  CAS  Google Scholar 

  44. Kurzweil P (2009) Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook. Sensors 9:4955–4985

    Article  CAS  Google Scholar 

  45. Zheng JP, Jow TR (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142:L6–L8

    Article  CAS  Google Scholar 

  46. Trasatti S, Kurzweil P (1994) Electrochemical supercapacitors as versatile energy stores. Platinum Metals Rev 38:46–56

    CAS  Google Scholar 

  47. Gojkovic S (2003) The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol. Electrochim Acta 48:3805–3813

    Article  Google Scholar 

  48. Mckeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 103:4825–4832

    Article  CAS  Google Scholar 

  49. Pocrifka LA, Freitas RG, Rosario AV, Pereira EC (2011) Dependence of RuO2-capacitive properties on preparation conditions. J Solid State Electrochem 15:1109–1113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dolati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahram, M., Asnavandi, M. & Dolati, A. Synthesis and electrochemical characterization of sol–gel-derived RuO2/carbon nanotube composites. J Solid State Electrochem 18, 993–1003 (2014). https://doi.org/10.1007/s10008-013-2346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2346-2

Keywords

Navigation