Skip to main content
Log in

Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A methodology to analyse electrochemical impedance spectroscopy (EIS) data for the study of microbiologically induced corrosion is proposed. The proposed methodology is based on the loss tangent behaviour of EIS spectra for sterile and bacteria-inoculated environments. Loss tangent parameters were obtained by fitting the EIS data to the Cole–Cole dispersion model using a genetic algorithm. Two electrochemical cells were implemented to expose carbon steel probes to sterile and inoculated media for two bacteria consortia, acid-producing bacteria (APB) and sulphate-reducing bacteria (SRB). The APB tests were exposed for 96 h and the SRB tests for 144 h. A microbial count was carried out during each experiment. The EIS spectra were measured during exposure for sterile and inoculated media. The spectra were fitted to a multi Cole–Cole dispersion model, and loss tangent parameters were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ibars JR, Polo JL, Moreno DA, Ranniger C, Bastidas JM (2004) Biotechnol Bioeng 87:855–862

    Article  CAS  Google Scholar 

  2. Ibars JR, Moreno DA, Ranniger C (1992) Int Biodeterior Biodegrad 29:343–355

    Article  CAS  Google Scholar 

  3. Rajasekar A, Ganesh-Babu T, Karutha-Pandian S, Maruthamuthu S, Palaniswamy N, Rajendran A (2007) Corros Sci 49:2694–2710

    Article  CAS  Google Scholar 

  4. Thierry D, Sand W (1995) Microbially Influenced Corrosion. In: Corrosion Mechanism in Theory and Practice, Marcus P. Oudar J (eds), Marcel Dekker, New York, pp 457–499

  5. Tang K, Baskaran V, Nemati M (2009) Biochem Eng J 44:73–94

    Article  CAS  Google Scholar 

  6. Fulger M, Mihalache M, Ohai D, Fulger S, Valeca SC (2011) J Nucl Mater 415:147–157

    Article  CAS  Google Scholar 

  7. Santana-Rodriguez JJ, Santana-Hernandez FJ, Gonzalez-Gonzalez JE (2006) Mater Corros 57:778–782

    Article  Google Scholar 

  8. Muñoz X, Garcia C, Muñoz F (2008) Electrochim Acta 53:5739–5744

    Article  Google Scholar 

  9. Cole KS, Cole RH (1941) J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  10. Cole KS, Cole RH (1942) J Chem Phys 10:98–105

    Article  CAS  Google Scholar 

  11. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment and applications, 2nd edn. Wiley, Hoboken, pp 168–204

    Book  Google Scholar 

  12. Andrade C, Blanco VM, Collazo A, Keddam M, Novoa XR, Takenouti H (1999) Electrochim Acta 44:4313–4318

    Article  CAS  Google Scholar 

  13. Davidson DW, Cole RH (1951) J Chem Phys 19:1484–1490

    Article  CAS  Google Scholar 

  14. Havriliak S, Negami S (1967) Polymers 8:161–210

    Article  CAS  Google Scholar 

  15. Levenberg K (1944) J Appl Math 2:164–168

    Google Scholar 

  16. Marquardt DW (1963) J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  17. Yang M, Zhang X, Li X, Wu X (2002) J Electroanal Chem 519:1–8

    Article  CAS  Google Scholar 

  18. Zeller RL III, Savinell RF (1986) Corros Sci 26:591–599

    Article  CAS  Google Scholar 

  19. Nelder JA, Mead R (1965) Comp J 7:308–313

    Article  Google Scholar 

  20. Dellis JL, Carpentir JL (1993) Solid State Ionic 62:119–123

    Article  CAS  Google Scholar 

  21. Boukamp BA (2004) Solid State Ionic 169:65–73

    Article  CAS  Google Scholar 

  22. VanderNoot TJ, Abrahams I (1998) J Electroanal Chem 448:17–23

    Article  CAS  Google Scholar 

  23. Sohn KS, Kim BI, Shin N (2004) J Electrochem Soc 151:H243–H248

    Article  CAS  Google Scholar 

  24. Bastidas JM, Polo JL, Torres CL, Cano E (2001) Corros Sci 43:269–281

    Article  CAS  Google Scholar 

  25. Miranda DA, Lopez-Rivera SA (2008) Physiol Meas 29:669–683

    Article  Google Scholar 

  26. NACE International, Standard Test Method: Field Monitoring of Bacterial Growth in Oil and Gas Systems, NACE TM0194-2004, Item No. 21224, 2004

  27. http://www.4oakton.com/TechTip.asp OAKTON Tech Tips. Practical Considerations for Conductivity and Total Dissolved Solids Measurement. Tech Tip 8, 1997 (accessed data 02–04–2013)

  28. http://substech.com SubsTech, Substances & Technologies, Carbon Steel SAE 1020, 2013 (accessed data 02–04–2013)

  29. http://www.jjorly.com Orly JJ, UHMW Technical Data Specifications, 2013 (accessed data 02–04–2013)

  30. Videla HA (1996) Manual of biocorrosion, chapter 3. CRC, New York

  31. Hernandez MJ, Zabala G, Ruiz N, Juarez C, Garcia R, Padilla A (2005) Electrochim Acta 49:4295–4301

    Article  Google Scholar 

  32. McDonald JR (1992) Ann Biomed Eng 20:289–305

    Article  Google Scholar 

  33. Girault HH (2004) Analytical and Physical Electrochemistry, Chapter 9, EFPL Press, Switzerland, pp 339–368

  34. Otero E, Bastidas JM, Lopez V (1997) Mater Corros 48:447–454

    Article  CAS  Google Scholar 

  35. Bastidas JM, Mora EM, Feliu S (1990) Mater Corros 41:343–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia; COLCIENCIAS; and the Corporación para la Investigación de la Corrosión (CIC) of Colombia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, D.A., Jaimes, S.A. & Bastidas, J.M. Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy. J Solid State Electrochem 18, 389–398 (2014). https://doi.org/10.1007/s10008-013-2262-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2262-5

Keywords

Navigation