Skip to main content
Log in

Effect of metal cations on corrosion behavior and surface film structure of the A3003 aluminum alloy in model tap waters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the metal cations, Na+, K+, Ca2+, Mg2+, Zn2+, and Ni2+, on the oxide film structure and morphology changes during long-term immersion corrosion tests of aluminum alloy (A3003) in model tap waters was investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The effect of the metal cations on the corrosion behavior was also investigated with mass change and electrochemical tests. The hardness of the metal cations, X, based on the hard and soft acids and bases (HSAB) concept was applied to explain the effect of metal cations on the passive oxide film structure and corrosion resistance. The mass change rate and corrosion current density decreased with increasing metal cation hardness. The XPS results showed that hard metal cations like Zn2+ and Ni2+ were incorporated in the oxide films, while the four soft metal cations were not incorporated in the oxide films. The results are in good agreement with those which could be expected from the HSAB hardness of the metal cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gough HJ, Sopwith DG (1932) Proceedings of the Royal Society of London, series A: mathematical. Phy Eng Sci 135:392–411

    Article  CAS  Google Scholar 

  2. Pavlov SE, Soboleva VA (1957) Korroziya i Zashchita Metal 236–259

  3. Baba Y, Hagiwara M (1968) Sumitomo Keikinzoku Giho 9:208–217

    CAS  Google Scholar 

  4. Gugliemi N (1969) Int Leichtmetalltag 5:39–43

    Google Scholar 

  5. Uchiyama I, Ohno K, Sato E (1976) Aruminyumu Kenkyu Kaishi 103:67–68

    CAS  Google Scholar 

  6. Reboul MC (1979) Corrosion 35:423–428

    Article  CAS  Google Scholar 

  7. Kanani N (1979) Aluminum 55:724–727

    CAS  Google Scholar 

  8. Sakaida T, Ikeda H, Tanabe Z (1985) Sumitomo Keikinzoku Giho 26:221–229

    CAS  Google Scholar 

  9. Furumata K, Suzuki T, Kobayashi J, Seri O (2001) Keikinzoku 51:242–245

    CAS  Google Scholar 

  10. Uchiyama I, Sato E (1976) Boshoku Gijutsu 25:725–732

    CAS  Google Scholar 

  11. Tohma K, Takeuchi Y (1979) Keikinzoku 29:498–504

    CAS  Google Scholar 

  12. Gray RJ, Griess JC, Crouse RS, DeVan JH (1978) Microstructural Sci 6:261–278

    CAS  Google Scholar 

  13. Takabeya R (1986) Boshoku Gijutsu 35:623–632

    CAS  Google Scholar 

  14. Xiao W, Hong S, Tang Z, Seal S, Taylor JS (2007) Corros Sci 49:449–468

    Article  CAS  Google Scholar 

  15. Gormna GK (1998) Mater Chem Phys 55:131–138

    Article  Google Scholar 

  16. Telegdi J, Shaglouf MM, Shaban A, Ka'rma'n FH, Betro'ti I, Mohai M, Ka'lma'n E (2001) Electrochim Acta 46:3791–3799

    Article  CAS  Google Scholar 

  17. Prosek T, Thierry D, Taxe'n C, Maixner J (2007) Corros Sci 49:2676–2693

    Article  CAS  Google Scholar 

  18. Sakairi M, Shimoyama Y, Nagasawa D (2008) Corros Sci Tech 7:168–172

    Google Scholar 

  19. Sakairi M, Kaneko A, Seki Y, Nagasawa D (2008) Proc Eurocorro 2008:2185

    Google Scholar 

  20. Sakairi M, Kaneko A, Kikuchi T, Seki Y, Nagasawa D (2009) Proceedings of Eurocorr2009 NO. SS 17-0-7947

  21. Otani K, Sakairi M, Kikuchi T, Kaneko A (2010) Zairyo-to-Kankyo 59:330–331

    Article  CAS  Google Scholar 

  22. Sakairi M, Kaneko A, Otani K, Seki Y, Nagasawa D (2011) Proceedings of 18th International Corrosion Congress10:533 (10 pages)

  23. Zhang S, Shibata T, Haruna T (2005) Corros Sci 47:1049–1061

    Article  CAS  Google Scholar 

  24. Misono M, Ochiai E, Saito Y, Yoneda Y (1967) J Inorg Nucl Chem 29:2685–2691

    Article  CAS  Google Scholar 

  25. Duret-Thual C, Costa D, Yang WP, Marcus P (1997) Corros Sci 39:913–933

    Article  CAS  Google Scholar 

  26. Reier T, Simson A, Schultze JW (1998) Electrochim Acta 43:149–158

    Article  CAS  Google Scholar 

  27. Hryniewicz T, Rok­osz K, Rok­ick­I R (2008) Corros Sci 50:2676–2681

    Article  CAS  Google Scholar 

  28. Sakairi M, Otani Y, Kaneko A, Seki Y, Nagasawa D (2013) Analysis of chemical compositions and morphology of surface films formed on 3003 aluminum alloy by immersion in different cation containing model tap waters. Surface and Interface Analysis special Issue article, doi:10.1002/sia.5256

  29. Li-yuan Q, Jian-she L, Qing J (2010) Trans Nonferrous Metals Soc China 20:82–89

    Article  Google Scholar 

  30. Chiba A, Muto I, Sugawara Y, Hara N (2012) J Electrochem Soc 159:C341–C350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sakairi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otani, K., Sakairi, M., Sasaki, R. et al. Effect of metal cations on corrosion behavior and surface film structure of the A3003 aluminum alloy in model tap waters. J Solid State Electrochem 18, 325–332 (2014). https://doi.org/10.1007/s10008-013-2260-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2260-7

Keywords

Navigation