Skip to main content
Log in

Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Y2O3 nano-film is coated on the surface of the spherical spinel LiMn2O4 by precipitation method and subsequent heat treatment at 550 °C for 5 h in air. The structure and performance of the bare LiMn2O4 and Y2O3-coated LiMn2O4 are characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis X-ray spectroscopy, galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. It has been found that the addition of Y2O3 does not change the bulk structure of LiMn2O4, and the thickness of the Y2O3 coating layer is approximate to 3.0 nm. The 1 wt% Y2O3-coated LiMn2O4 electrode reveals excellent cycling performance with 80.3 % capacity retention after 500 cycles at 1 C at 25 °C. When cycling at elevated temperature 55 °C, the as-prepared sample still shows 76.7 % capacity retention after 500 cycles. These remarkable improvements indicate that thin Y2O3 coating on the surface of LiMn2O4 is an effective way to improve the electrochemistry performance. Besides, the suppression of Mn dissolution into the electrolyte via the Y2O3 coating layer can be accounted for the improved performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  3. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  4. Thackeray MM, Johnson PJ, Piccootto LAD (1984) Electrochemical extraction of lithium from LiMn2O4. Mater Res Bull 19:179–187

    Article  CAS  Google Scholar 

  5. Deng B, Nakamurab H, Yoshiob M (2005) Comparison and improvement of the high rate performance of different types of LiMn2O4 spinels. J Power Sources 141:116–121

    Article  CAS  Google Scholar 

  6. Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 Cells. J Electrochem Soc 143:2204–2211

    Article  CAS  Google Scholar 

  7. Aoshima T, Okahara K, Kiyohara C, Shizuka K (2001) Mechanisms of manganese spinels dissolution and capacity fade at high temperature. J Power Sources 97–98:377–380

    Article  Google Scholar 

  8. Yamada A, Tanaka M, Tanaka K, Sekai K (1999) Jahn–Teller instability in spinel Li–Mn–O. J Power Sources 81–82:73–78

    Article  Google Scholar 

  9. Lee SW, Kim KS, Moon HS, Lee JP, Kim HJ, Cho BW, Cho W, Park JW (2004) Electrochemical and structural characteristics of metal oxide-coated lithium manganese oxide (spinel type): Part I. In the range of 2.5-4.2 V. J Power Sources 130:227–232

    Article  CAS  Google Scholar 

  10. Gao Y, Dahn JR (1996) Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2−xO4 materials. Solid State Ionics 84:33–40

    Article  CAS  Google Scholar 

  11. Zhou F, Zhao XM, Dahn JR (2009) Synthesis, electrochemical properties, and thermal stability of Al-doped LiNi1/3Mn1/3Co(1/3−z)AlzO2 positive electrode materials. J Electrochem Soc 156:343–347

    Article  Google Scholar 

  12. Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Positive electrode materials with high operating voltage for lithium batteries:LiCryMn(2−y)O4 (0 < y < 1). Solid State Ionics 81:167–171

    Article  CAS  Google Scholar 

  13. Takahashi M, Yoshida T, Ichikawa A, Kitoh K, Katsukawa H, Zhang Q, Yoshio M (2006) Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature. Electrochim Acta 51:5508–5514

    Article  CAS  Google Scholar 

  14. Lee SW, Kima KS, Moona HS, Kimb HJ, Chob BW, Chob W, Ju JB, Park JW (2004) Electrochemical characteristics of Al2O3-coated lithium manganese pinel as a cathode material for a lithium secondary battery. J Power Sources 126:150–155

    Article  CAS  Google Scholar 

  15. Xiang JF, Chang CX, Yuan LJ, Sun JT (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem Commun 10:1360–1363

    Article  CAS  Google Scholar 

  16. Kim WK, Han DW, Ryu WH, Lim SJ, Kwon HS (2012) Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance. Electrochim Acta 71:17–21

    Article  CAS  Google Scholar 

  17. Arumugam D, Kalaignan GP (2008) Synthesis and electrochemical characterizations of nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. J Electroanal Chem 624:197–204

    Article  CAS  Google Scholar 

  18. Arumugam D, Kalaignan GP (2010) Synthesis and electrochemical characterizations of nano-La2O3-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Mater Res Bull 45:1825–1831

    Article  CAS  Google Scholar 

  19. Wu F, Wang M, Su YF, Chen S, Xua B (2009) Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J Power Sources 191:628–632

    Article  CAS  Google Scholar 

  20. Lai C, Wy Y, Liu HY, Wang WJ (2009) Preparation of TiO2-coated LiMn2O4 by carrier transfer method. Ionics 15:389–392

    Article  CAS  Google Scholar 

  21. Walz KA, Johnson CS, Genthe J, Stoiber LC, Zeltner WA, Anderson MA, Thackeray MM (2010) Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings. J Power Sources 195:4943–4951

    Article  CAS  Google Scholar 

  22. Lim SH, Cho J (2008) PVP-Assisted ZrO2 coating on LiMn2O2 spinel cathode nanoparticle sprepared by MnO2 nanowire templates. Electrochem Commun 10:1478–1481

    Article  CAS  Google Scholar 

  23. Cho MY, Roh KC, Park SM, Lee JW (2011) Effects of CeO2 coating uniformity on high temperature cycle life performance of LiMn2O4. Mater Lett 65:2011–2014

    Article  CAS  Google Scholar 

  24. Arumugam D, Kalaignan GP (2010) Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim Acta 55:8709–8716

    Article  CAS  Google Scholar 

  25. Ha HW, Yun NJ, Kim K (2007) Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim Acta 52:3236–3241

    Article  CAS  Google Scholar 

  26. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochem Commun 5:940–945

    Article  CAS  Google Scholar 

  27. Jang SB, Kang SH, Amine K, Bae YC, Sun YK (2005) Synthesis and improved electrochemical performance of Al(OH)3-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature. Electrochim Acta 50:4168–4173

    Article  CAS  Google Scholar 

  28. Bai Y, Wu F, Yang H-T, Zhong Y, Wu C (2012) Surface modification of spinel LiMn2O4 with Y2O3 for lithium-ion battery. Adv Mater Res 391–392:1069–1074

    Article  Google Scholar 

  29. Şahan H, Göktepe H, Patat Ş, Ülgen A (2010) Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as acathode material for lithium battery applications. Solid State Ionics 181:1437–1444

    Article  Google Scholar 

  30. Zhou WJ, Bao SJ, He BL, Liang YY, Li HL (2006) Synthesis and electrochemical properties of LiAl0.05Mn1.95O4 by the ultrasonic assisted rheological phase method. Electrochim Acta 51:4701–4708

    Article  CAS  Google Scholar 

  31. Tarascon JM, Guyomard D (1993) The Li1+xMn2O4/C rocking-chair system: a review. Electrochim Acta 38:1221–1231

    Article  CAS  Google Scholar 

  32. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

  33. Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218

    Article  CAS  Google Scholar 

  34. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten R (2000) On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes. Electrochim Acta 45:1781–1789

    Article  CAS  Google Scholar 

  35. Fey GTK, Lu CZ, Kumar TP (2003) Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5−yMn1.5O4 (M = Fe, Cu, Al, Mg; y = 0.0–0.4). J Power Sources 115:332–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under project no. 20871101, Joint Fund of Natural Science of Hunan Province and Xiangtan City under project no. 09BG005, and Project of Condition Research of Hunan Province under project no. 2010TC2004 Colleges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, B., Wang, X., Wu, C. et al. Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. J Solid State Electrochem 18, 115–123 (2014). https://doi.org/10.1007/s10008-013-2241-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2241-x

Keywords

Navigation