Journal of Solid State Electrochemistry

, Volume 18, Issue 1, pp 13–18 | Cite as

Anodic electrodeposition of Ag1− x Cu x O microcrystals

  • Anna M. Fyhn
  • Xiaodong Yang
  • Mohammadreza Nematollahi
  • John C. Walmsley
  • Ursula J. Gibson
Original Paper


We demonstrate the anodic electrodeposition of copper-doped AgO at high pH using a silver counter-electrode. Precipitates from a mixture of nitrates and NaOH provided source material for the deposition, and application of a moderate anodic voltage (0.9 V) to the substrate led to deposition of crystalline nanoparticles with incorporated copper. Further increase of the NaOH concentration reduced the amount of copper in the crystals, and higher voltages degraded the crystal quality. XRD confirms the underlying structure to be that of AgO, and Auger and energy dispersive x-ray analyses confirm copper concentrations of approximately 3 % in the crystals.


Nanostructures Oxides Electrodeposition Doping Crystal morphology 


  1. 1.
    Golden TD, Shumsky MG, Zhou YC, VanderWerf RA, VanLeeuwen RA, Switzer JA (1996) Chem Mater 8:2499–2504CrossRefGoogle Scholar
  2. 2.
    Septina W, Ikeda S, Khan MA, Hirai T, Harada T, Matsumura M, Peter LM (2011) Electrochim Acta 56:48824888CrossRefGoogle Scholar
  3. 3.
    Fortin E, Masson D (1982) Solid-State Electronics 25:281283CrossRefGoogle Scholar
  4. 4.
    Katayama J, Ito K, Matsuoka M, Tamaki J (2004) J of Appl Electrochem 34:687692CrossRefGoogle Scholar
  5. 5.
    Jeong SS, Mittiga A, Salza E, Masci A, Passerini S (2008) Electrochim Acta 53:22262231CrossRefGoogle Scholar
  6. 6.
    Ida Y, Watase S, Shinagawa T, Watanabe M, Chigane M, Inaba M, Tasaka A, Izaki M (2008) Chem Mater 20:1254–1256CrossRefGoogle Scholar
  7. 7.
    Subrahmanyam A, Barik UK (2007) J Mater Sci 42:6041–6045CrossRefGoogle Scholar
  8. 8.
    Shima T, Buechel D, Mihalcea C, Kim J, Atoda N, Tominaga J (2003) Top in Appl Phys 88:49–58CrossRefGoogle Scholar
  9. 9.
    Fang C, Ellis AV, Voelcker NH (2012) Electrochim Acta 59:346–353CrossRefGoogle Scholar
  10. 10.
    Feng J, Xiao B, Chen JC, Zhou CT, Du YP, Zhou R (2009) Solid State Commun 149:1569–1573CrossRefGoogle Scholar
  11. 11.
    Muñoz-Rojas D, Córdoba R, Fernández-Pacheco A (2010) María De Teresa J, Sauthier G, Fraxedas J, Walton RI, Casañ-Pastor N. Inorg Chem 49:10977–10983CrossRefGoogle Scholar
  12. 12.
    Gomez-Romero P, Tejada-Rosales E, Palacin MR (1999) Angew Chem Int Ed Engl 38:524CrossRefGoogle Scholar
  13. 13.
    Curda J, Klein W, Jansen M (2001) J of Solid State Chem 162:220–224CrossRefGoogle Scholar
  14. 14.
    Curda J, Klein W, Liu H, Jansen M (2002) J of Alloys Compd 338:99103CrossRefGoogle Scholar
  15. 15.
    Pierson JF et al (2006) Appl Surf Sci 253:1484–1488CrossRefGoogle Scholar
  16. 16.
    Lund E, Galeckas A, Monakhov E, Svensson BG (2011) Thin Solid Films. doi: 10.1016/j.tsf.2011.07.030 Google Scholar
  17. 17.
    Lund E, Galeckas A, Monakhov EV, Svensson BG (2012) Phys Stat Solidi C9:1590–1592Google Scholar
  18. 18.
    Munoz-Rojas D, Oró J, Gómez-Romero P, Fraxedas J, Casañ-Pastor N (2002) Electrochem Commun 4:684–689CrossRefGoogle Scholar
  19. 19.
    Breyfogle BE, Hung CJ, Shumsky MG, Switzer JA (1996) J Electrochem Soc 143:2741–2746CrossRefGoogle Scholar
  20. 20.
    Aylward G , Findlay T, SI chemical data 5th ed, 2002, John Wiley & Sons Australia Ltd, ISBN-13 978 0 470 800444 7Google Scholar
  21. 21.
    Tischler JZ, Budai JD, Ice G, Habenschuss J (1988) Acta Cryst A44:22–25CrossRefGoogle Scholar
  22. 22.
    Pickardt J, Paulus W, Schmalz M, Schöllhorn R (1990) J Sol State Chem 89:308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anna M. Fyhn
    • 1
  • Xiaodong Yang
    • 1
  • Mohammadreza Nematollahi
    • 1
  • John C. Walmsley
    • 1
    • 2
  • Ursula J. Gibson
    • 1
  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF, Materials and ChemistryTrondheimNorway

Personalised recommendations