Skip to main content
Log in

Impact of the Pt catalyst on the oxygen electroreduction reaction kinetics on various carbon supports

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Micro- and mesoporous carbide-derived carbons synthesized from molybdenum and tungsten carbides were used as porous supports for a platinum catalyst. Synthesized materials were compared with commercial Vulcan XC72R conducting furnace black. The scanning electron microscopy, X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and low-temperature N2 adsorption methods were applied to characterize the structure of catalysts prepared. The kinetics of oxygen electroreduction in 0.5 M H2SO4 solution was studied using cyclic voltammetry and rotating disk electrode methods. The synthesized carbide-derived carbons exhibited high specific surface area and narrow pore size distribution. The platinum catalyst was deposited onto the surface of a carbon support in the form of nanoparticles or agglomerates of nanoparticles. Comparison of carbide-derived carbons and Vulcan XC72R as a support showed that the catalysts prepared using carbide-derived carbons are more active towards oxygen electroreduction. It was shown that the structure of the carbon support has a great influence on the activity of the catalyst towards oxygen electroreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  2. Petrii OA (2008) Pt-Ru electrocatalysts for fuel cells: a representative review. J Solid State Electrochem 12:609–642

    Article  CAS  Google Scholar 

  3. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358

    Article  CAS  Google Scholar 

  4. Schmidt TJ, Gasteiger HA, Behm RJ (1999) Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst. J Electrochem Soc 146:1296–1304

    Article  CAS  Google Scholar 

  5. Chai GS, Yoon SB, Yu J-S, Choi J-H, Sung Y-E (2004) Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 108:7074–7079

    Article  CAS  Google Scholar 

  6. Gottesfeld S, Raistrick ID, Srinivasan S (1987) Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film. J Electrochem Soc 134:1455–1462

    Article  CAS  Google Scholar 

  7. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24

    Article  CAS  Google Scholar 

  8. Jänes A, Thomberg T, Lust E (2007) Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide. Carbon 45:2717–2722

    Article  Google Scholar 

  9. Álvarez G, Alcaide F, Miguel O, Calvillo L, Lázaro M, Quintana J, Calderón J, Pastor E (2010) Technical electrodes catalyzed with PtRu on mesoporous ordered carbons for liquid direct methanol fuel cells. J Solid State Electrochem 14:1027–1034

    Article  Google Scholar 

  10. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide derived carbon with tunable pore size. Nat Mater 2:591–594

    Article  CAS  Google Scholar 

  11. Tallo I, Thomberg T, Jänes A, Lust E (2012) Electrochemical behavior of α-tungsten carbide-derived carbon based electric double-layer capacitors. J Electrochem Soc 159(3):A208–A213

    Article  CAS  Google Scholar 

  12. Tallo I, Thomberg T, Jänes A, Kontturi K, Lust E (2011) Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide. Carbon 49:4427–4433

    Article  CAS  Google Scholar 

  13. Jänes A, Thomberg T, Kurig H, Lust E (2009) Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon 47:23–29

    Article  Google Scholar 

  14. Thomberg T, Jänes A, Lust E (2009) Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J Electroanal Chem 630:55–62

    Article  CAS  Google Scholar 

  15. Vaarmets K, Sepp S, Nerut J, Härk E, Tallo I, Lust E (2013) Electrochemical and physical characterization of Pt-Ru alloy catalyst deposited onto microporous-mesoporous carbon support derived from Mo2C at 600°C. J Solid State Electrochem 17:1729–1741

    Article  CAS  Google Scholar 

  16. Härk E, Nerut J, Vaarmets K, Tallo I, Kurig H, Eskusson J, Kontturi K, Lust E (2013) Electrochemical impedance characteristics and electroreduction of oxygen at tungsten carbide derived micromesoporous carbon electrodes. J Electroanal Chem 689:176–184

    Article  Google Scholar 

  17. Lust E, Härk E, Nerut J, Vaarmets K (2012) Pt and Pt-Ru catalysts for polymer electrolyte fuel cells deposited onto carbide derived carbon supports. Electrochem Acta. doi:10.1016/j.electacta.2012.10.024

    Google Scholar 

  18. Borchardt L, Hasché F, Lohe MR, Oschatz M, Schmidt F, Kockrick E, Ziegler C, Lescouet T, Bachmatiuk A, Büchner B, Farrusseng D, Strasser P, Kaskel S (2012) Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon 50:1861–1870

    Article  CAS  Google Scholar 

  19. Antolini E, Cardellini F (2001) Formation of carbon supported PtRu alloys: an XRD analysis. J Alloys Compd 315:118–122

    Article  CAS  Google Scholar 

  20. Lakshminarayanan V, Srinivasan R, Chu D, Gilman S (1997) Area determination in fractal surfaces of Pt and Pt-Ru electrodes. Surf Sci 392:44–51

    Article  CAS  Google Scholar 

  21. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  22. Macdonald JR (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  23. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  24. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  25. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micrometrics Instrument Corp, Norcross

    Google Scholar 

  26. Gara M, Compton RG (2011) Activity of carbon electrodes towards oxygen reduction in acid: a comparative study. New J Chem 35:2647–2652

    Article  CAS  Google Scholar 

  27. Bond GC (1975) Small particles of the platinum metals. Platin Met Rev 19:126–134

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Estonian Target Research Project SF0180002s08, Estonian Energy Technology Program Project SLOKT 10209T, Estonian Centre of Excellence Project 3.2.0101-11-0030, and ESF grant ETF8267. Authors thank J. Eskusson, I. Tallo, H. Kurig, J. Aruväli, and Prof. K. Kirsimägi for performing SEM-EDX, XRD, and BET measurements and analysis of the data. Prof. K. Kontturi from Aalto University is thanked for the help with HRTEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sepp, S., Härk, E., Valk, P. et al. Impact of the Pt catalyst on the oxygen electroreduction reaction kinetics on various carbon supports. J Solid State Electrochem 18, 1223–1229 (2014). https://doi.org/10.1007/s10008-013-2180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2180-6

Keywords

Navigation