Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media

Abstract

The electrochemical reduction of CO2 on copper is an intensively studied reaction. However, there has not been much attention for CO2 reduction on copper in alkaline electrolytes, because this creates a carbonate buffer in which CO2 is converted in HCO3 and the pH of the electrolyte decreases. Here, we show that electrolytes with phosphate buffers, which start off in the alkaline region and, after saturation with CO2, end up in the neutral region, behave differently compared to CO2 reduction in phosphate buffers which starts off in the neutral region. In initially alkaline buffers, a reduction peak is observed, which is not seen in neutral buffer solutions. In contrast with earlier literature reports, we show that this peak is not due to the formation of a CO adlayer on the electrode surface but due to the production of formate via direct bicarbonate reduction. The intensity of the reduction peak is influenced by electrode morphology and the identity of the cations and anions in solution. It is found that a copper nanoparticle-covered electrode gives a rise in intensity in comparison with mechanically polished and electropolished electrodes. The peak is observed in the SO4 2−-, ClO4 -, and Cl- containing electrolytes, but the formate-forming peak is not seen with Br and I.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Gattrell M, Gupta N, Co A (2007) Energy Convers Manage 48:1255–1265

    Article  CAS  Google Scholar 

  2. 2.

    Whipple DTK, Kenis PJA (2010) J Phys Chem Lett 1:3451–3458

    Article  CAS  Google Scholar 

  3. 3.

    Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 11:1695–1698

    Article  Google Scholar 

  4. 4.

    Scibioh MAV, Viswanathan B (2004) Proc Indian Natn Sci Acad A 70:1–56

    Google Scholar 

  5. 5.

    Gattrell M, Gupta N, Co A (2006) J Electroanal Chem 594:1–19

    Article  CAS  Google Scholar 

  6. 6.

    Hori Y (2008) In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern Aspects of Electrochemistry. Springer, New York

    Google Scholar 

  7. 7.

    Spinner NS, Vega JA, Mustain WE (2012) Catal Sci Technol 2:19–28

    Article  CAS  Google Scholar 

  8. 8.

    Schouten KJP, Qin Z, Pérez Gallent E, Koper MTM (2012) J Am Chem Soc 134:9864–9867

    Article  CAS  Google Scholar 

  9. 9.

    Hori Y, Takahashi R, Yoshinami Y, Murata A (1997) J Phys Chem B 101:7075–7081

    Article  CAS  Google Scholar 

  10. 10.

    Jović VD, Jović BM (2003) J Electroanal Chem 541:13–21

    Article  Google Scholar 

  11. 11.

    Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215–1221

    Article  CAS  Google Scholar 

  12. 12.

    Kwon Y, Koper MTM (2010) Anal Chem 82:5420–5424

    Article  CAS  Google Scholar 

  13. 13.

    Hori Y, Murata A, Takahashi R, Suzuki S (1988) J Chem Soc Chem Commun 1:17–19

    Article  Google Scholar 

  14. 14.

    Hori Y, Murata A, Takahashi R (1989) J Chem Soc, Faraday Trans 1:2309–2326

    Google Scholar 

  15. 15.

    De Jesus-Cardona HDM, Del Moral C, Cabrera CR (2001) J Electroanal Chem 513:45–51

    Article  Google Scholar 

  16. 16.

    Christophe J, Doneux T, Buess-Herman C (2012) Electrocatal 3:139–146

    Article  CAS  Google Scholar 

  17. 17.

    Spichiger-Ulmann M, Augustynsky J (1985) J Chem Soc, Faraday Trans 1(81):713–716

    Google Scholar 

  18. 18.

    Podlovchenko BI, Kolyadko EA, Lu S (1994) J Electroanal Chem 373:185–187

    Article  CAS  Google Scholar 

  19. 19.

    Teeter TE, Van Rysselberghe P (1954) J Chem Phys 22:759–760

    CAS  Google Scholar 

  20. 20.

    Hori Y, Suzuki S (1983) J Electrochem Soc 130:2387–2390

    Article  CAS  Google Scholar 

  21. 21.

    Spichiger-Ulmann M, Augustynski J (1986) Helv Chim Acta 69:632–634

    Article  CAS  Google Scholar 

  22. 22.

    Perez Sanchez M, Souto RM, Barrera M, Gonzalez S, Salvarezza RC, Arvia AJ (1993) Electrochim Acta 38:703–715

    Article  CAS  Google Scholar 

  23. 23.

    Smith BD, Irish DE (1997) J Electrochem Soc 144:4288–4296

    Article  CAS  Google Scholar 

  24. 24.

    Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM (2011) Chem Sci 2:1902–1909

    Article  CAS  Google Scholar 

  25. 25.

    Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) Phys Chem Chem Phys 14:76–81

    Article  CAS  Google Scholar 

  26. 26.

    Hori Y, Takahashi I, Koga O, Hoshi N (2003) J Mol Catal A: Chem 199:39–47

    Article  CAS  Google Scholar 

  27. 27.

    Takahashi I, Koga O, Hoshi N, Hori Y (2002) J Electroanal Chem 533:135–143

    Article  CAS  Google Scholar 

  28. 28.

    Brisard G, Bertrand N, Ross PB, Marković NM (2000) J Electroanal Chem 480:219–224

    Article  CAS  Google Scholar 

  29. 29.

    Delahay P, Mattax C (1954) J Am Chem Soc 76:5314–5318

    Article  CAS  Google Scholar 

  30. 30.

    Frumkin AN (1959) Trans Faraday Soc 55:156–167

    Article  CAS  Google Scholar 

  31. 31.

    Murata A, Hori Y (1991) Bull Chem Soc Jpn 64:123–127

    Article  CAS  Google Scholar 

  32. 32.

    Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochim Acta 51:3316–3321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners. The research of YK has been performed within the framework of the CatchBio program. The authors gratefully acknowledge the support of the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. T. M. Koper.

Additional information

In celebration of the 90th birthday of Prof. Dr. Wolf Vielstich

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kortlever, R., Tan, K.H., Kwon, Y. et al. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media. J Solid State Electrochem 17, 1843–1849 (2013). https://doi.org/10.1007/s10008-013-2100-9

Download citation

Keywords

  • HCO3
  • Reduction Peak
  • Hydrogen Evolution Reaction
  • Reversible Hydrogen Electrode
  • KClO4