Journal of Solid State Electrochemistry

, Volume 17, Issue 7, pp 1843–1849 | Cite as

Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media

  • R. Kortlever
  • K. H. Tan
  • Y. Kwon
  • M. T. M. Koper
Original Paper

Abstract

The electrochemical reduction of CO2 on copper is an intensively studied reaction. However, there has not been much attention for CO2 reduction on copper in alkaline electrolytes, because this creates a carbonate buffer in which CO2 is converted in HCO3 and the pH of the electrolyte decreases. Here, we show that electrolytes with phosphate buffers, which start off in the alkaline region and, after saturation with CO2, end up in the neutral region, behave differently compared to CO2 reduction in phosphate buffers which starts off in the neutral region. In initially alkaline buffers, a reduction peak is observed, which is not seen in neutral buffer solutions. In contrast with earlier literature reports, we show that this peak is not due to the formation of a CO adlayer on the electrode surface but due to the production of formate via direct bicarbonate reduction. The intensity of the reduction peak is influenced by electrode morphology and the identity of the cations and anions in solution. It is found that a copper nanoparticle-covered electrode gives a rise in intensity in comparison with mechanically polished and electropolished electrodes. The peak is observed in the SO42−-, ClO4-, and Cl- containing electrolytes, but the formate-forming peak is not seen with Br and I.

Notes

Acknowledgments

This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners. The research of YK has been performed within the framework of the CatchBio program. The authors gratefully acknowledge the support of the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science.

References

  1. 1.
    Gattrell M, Gupta N, Co A (2007) Energy Convers Manage 48:1255–1265CrossRefGoogle Scholar
  2. 2.
    Whipple DTK, Kenis PJA (2010) J Phys Chem Lett 1:3451–3458CrossRefGoogle Scholar
  3. 3.
    Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 11:1695–1698CrossRefGoogle Scholar
  4. 4.
    Scibioh MAV, Viswanathan B (2004) Proc Indian Natn Sci Acad A 70:1–56Google Scholar
  5. 5.
    Gattrell M, Gupta N, Co A (2006) J Electroanal Chem 594:1–19CrossRefGoogle Scholar
  6. 6.
    Hori Y (2008) In: Vayenas CG, White RE, Gamboa-Aldeco ME (eds) Modern Aspects of Electrochemistry. Springer, New YorkGoogle Scholar
  7. 7.
    Spinner NS, Vega JA, Mustain WE (2012) Catal Sci Technol 2:19–28CrossRefGoogle Scholar
  8. 8.
    Schouten KJP, Qin Z, Pérez Gallent E, Koper MTM (2012) J Am Chem Soc 134:9864–9867CrossRefGoogle Scholar
  9. 9.
    Hori Y, Takahashi R, Yoshinami Y, Murata A (1997) J Phys Chem B 101:7075–7081CrossRefGoogle Scholar
  10. 10.
    Jović VD, Jović BM (2003) J Electroanal Chem 541:13–21CrossRefGoogle Scholar
  11. 11.
    Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215–1221CrossRefGoogle Scholar
  12. 12.
    Kwon Y, Koper MTM (2010) Anal Chem 82:5420–5424CrossRefGoogle Scholar
  13. 13.
    Hori Y, Murata A, Takahashi R, Suzuki S (1988) J Chem Soc Chem Commun 1:17–19CrossRefGoogle Scholar
  14. 14.
    Hori Y, Murata A, Takahashi R (1989) J Chem Soc, Faraday Trans 1:2309–2326Google Scholar
  15. 15.
    De Jesus-Cardona HDM, Del Moral C, Cabrera CR (2001) J Electroanal Chem 513:45–51CrossRefGoogle Scholar
  16. 16.
    Christophe J, Doneux T, Buess-Herman C (2012) Electrocatal 3:139–146CrossRefGoogle Scholar
  17. 17.
    Spichiger-Ulmann M, Augustynsky J (1985) J Chem Soc, Faraday Trans 1(81):713–716Google Scholar
  18. 18.
    Podlovchenko BI, Kolyadko EA, Lu S (1994) J Electroanal Chem 373:185–187CrossRefGoogle Scholar
  19. 19.
    Teeter TE, Van Rysselberghe P (1954) J Chem Phys 22:759–760Google Scholar
  20. 20.
    Hori Y, Suzuki S (1983) J Electrochem Soc 130:2387–2390CrossRefGoogle Scholar
  21. 21.
    Spichiger-Ulmann M, Augustynski J (1986) Helv Chim Acta 69:632–634CrossRefGoogle Scholar
  22. 22.
    Perez Sanchez M, Souto RM, Barrera M, Gonzalez S, Salvarezza RC, Arvia AJ (1993) Electrochim Acta 38:703–715CrossRefGoogle Scholar
  23. 23.
    Smith BD, Irish DE (1997) J Electrochem Soc 144:4288–4296CrossRefGoogle Scholar
  24. 24.
    Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM (2011) Chem Sci 2:1902–1909CrossRefGoogle Scholar
  25. 25.
    Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) Phys Chem Chem Phys 14:76–81CrossRefGoogle Scholar
  26. 26.
    Hori Y, Takahashi I, Koga O, Hoshi N (2003) J Mol Catal A: Chem 199:39–47CrossRefGoogle Scholar
  27. 27.
    Takahashi I, Koga O, Hoshi N, Hori Y (2002) J Electroanal Chem 533:135–143CrossRefGoogle Scholar
  28. 28.
    Brisard G, Bertrand N, Ross PB, Marković NM (2000) J Electroanal Chem 480:219–224CrossRefGoogle Scholar
  29. 29.
    Delahay P, Mattax C (1954) J Am Chem Soc 76:5314–5318CrossRefGoogle Scholar
  30. 30.
    Frumkin AN (1959) Trans Faraday Soc 55:156–167CrossRefGoogle Scholar
  31. 31.
    Murata A, Hori Y (1991) Bull Chem Soc Jpn 64:123–127CrossRefGoogle Scholar
  32. 32.
    Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochim Acta 51:3316–3321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Kortlever
    • 1
  • K. H. Tan
    • 1
  • Y. Kwon
    • 1
  • M. T. M. Koper
    • 1
  1. 1.Leiden Institute of ChemistryLeiden UniversityLeidenthe Netherlands

Personalised recommendations