Skip to main content
Log in

Pulsed current electrodeposition of Zn–Ag2S/TiO2 nanocomposite films as potential photoelectrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposite Zn–Ag2S/TiO2 and Zn–TiO2 films were prepared by pulsed current electrolysis from acidic zinc sulphate solutions on a titanium substrate. The influence of the nanoparticles' nature on the structural and morphological characteristics of the metallic electrodeposit was also investigated. The electrodeposits were characterized by X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Using transmission electron microscopy, it was possible to conclude that the chemical treatment applied to the commercial TiO2 particles promotes the formation of Ag2S/TiO2 composite nanoparticles, with Ti, Ag, S and O in its composition. This was also was confirmed by X-ray fluorescence spectrometry. These particles absorb visible light radiation which makes them promising materials for photoelectrocatalytic processes. Moreover, the modification in nanoparticle composition plays a remarkable influence on the coating morphology and Zn crystallite size. When TiO2 is added, a change of Zn texture was observed along with a decrease in crystallite size. In contrast, the metal matrix nanocomposites prepared with Ag2S/TiO2 exhibit a spongy Zn morphology with a lower average Zn crystallite size. The nanocomposite films were tested in the photoelectrodegradation of ibuprofen and the best results were obtained for Zn–Ag2S/ TiO2 photoelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhou M, de Tacconi NR, Rajeshwar K (1997) J Electroanal Chem 421:111–120

    Article  CAS  Google Scholar 

  2. Ito S, Deguchi T, Imai K, Iwasaki M, Tada H (1999) Electrochem Solid State Lett 2:440–442

    Article  CAS  Google Scholar 

  3. Deguchi T, Imai K, Iwasaki M, Tada H, Ito S (2000) J Electrochem Soc 147:2263–2267

    Article  CAS  Google Scholar 

  4. Beranek R (2011) Advances in physical chemistry, Article ID 786759, 20 pages

  5. Gomes A, da Silva Pereira MI, Mendonça MH, Costa FM (2005) J Solid State Electrochem 9:190–196

    Article  CAS  Google Scholar 

  6. Fustes J, Gomes A, da Silva Pereira MI (2008) J Solid State Electrochem 12:1435–1443

    Article  CAS  Google Scholar 

  7. Gomes A, Frade T, Lobato K, Melo Jorge ME, da Silva Pereira MI, Círiaco L, Lopes A (2012) J Solid State Electrochem 16:2061–2069

    Article  CAS  Google Scholar 

  8. Seery MK, George R, Floris P, Pillai SC (2007) J Photochem Photobiol A 189:258–263

    Article  CAS  Google Scholar 

  9. Vogel R, Hoyer P, Weller H (1994) J Phys Chem 98:3183–3188

    Article  CAS  Google Scholar 

  10. Meng Z-D, Ghosh T, Zhu L, Choi J-G, Park C-Y, Oh W-C (2012) J Mater Chem 22:16127–16135

    Article  CAS  Google Scholar 

  11. Neves MC, Nogueira JMF, Trindade T, Mendonça MH, Pereira MI, Monteiro OC (2009) J Photochem Photobiol A: Chem 204:168–173

    Article  CAS  Google Scholar 

  12. Zhang Y, Liu B, Wang D, Lin Y, Xie T, Zhai J (2012) Mat Chem Phys 133:834–838

    Article  CAS  Google Scholar 

  13. Huang Z-J, Xiong D-S (2008) Surf Coat Tech 202:3208–3214

    Article  CAS  Google Scholar 

  14. Huang Z-J, Xiong D-S (2009) Surf Rev Lett 16:455–462

    Article  CAS  Google Scholar 

  15. Madhavan J, Grieser F, Ashokkumar M (2010) J Hazard Mater 178:202–208

    Article  CAS  Google Scholar 

  16. Zhao X, Qu J, Liu H, Qiang Z, Liu R, Hu C (2009) Appl Cat B: Environ 91:539–545

    Article  CAS  Google Scholar 

  17. Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcia MA, Moreno-Castilla C (2001) J Chem Technol Biotechnol 76:1209–1215

    Article  CAS  Google Scholar 

  18. Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C (1998) Langmuir 14:1880–1886

    Article  CAS  Google Scholar 

  19. Bérubé LP (1989) L´Espérance G. J Electrochem Soc 136:2314–2315

    Article  Google Scholar 

  20. Power Diffraction File Alphabetical Index (1988) JCPDS-ICDD International Center for Diffraction Data (ed) File 14-0072, Swarthmore.

  21. Sobana N, Muruganadham M, Swaminathan M (2006) J Molecular Catalysis A: Chem 258:124–132

    Article  CAS  Google Scholar 

  22. Lopez R, Gomez R (2012) J Sol-Gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  23. Gärtner M, Dremov V, Müller P, Kisch H (2005) Chem Phys Chem 6:714–718

    Article  Google Scholar 

  24. Neves MC, Monteiro OC, Hempelmann R, Silva AMS, Trindade T (2008) Eur J Inorg Chem 4380–4386

  25. Saha S, Wang JM, Pal A (2012) Sep Pur Tech 89:147–159

    Article  CAS  Google Scholar 

  26. Gabe DR (1997) J Appl Electrochem 27:908–915

    Article  CAS  Google Scholar 

  27. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) J Electroanal Chem 159:267–285

    Article  CAS  Google Scholar 

  28. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 52:863–871

    Article  CAS  Google Scholar 

  29. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker, New York

    Google Scholar 

  30. Gafoor AKA, Musthafa MM, Pradyumnan PP (2012) J Elect Mat 41:2387–2392

    Article  Google Scholar 

  31. Suwanchawalit C, Wongnawa S, Sriprang P, Meanha P (2012) Ceramics International 38:5201–5207

    Article  CAS  Google Scholar 

  32. Power Diffraction File Alphabetical Index (1988) JCPDS-ICDD International Center for Diffraction Data (ed) File 4-0831, Swarthmore.

  33. Frade T, Melo Jorge ME, Gomes A (2012) Surf Coat Tech 206:3459–3466

    Article  CAS  Google Scholar 

  34. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical Phase Formation and Growth. Weinheim, VCH

    Book  Google Scholar 

  35. Youssef KM, Koch CC, Fedkiw PS (2008) Electrochim Acta 54:677–683

    Article  CAS  Google Scholar 

  36. Ramanauskas R, Gudavièiûtë L, Juðkënas R, Šèit O (2007) Electrochim Acta 53:1801–1810

    Article  CAS  Google Scholar 

  37. Gomes A, Pereira I, Fernandez B, Pereiro R (2011) In: Reddy BSR (ed) Advances in nanocomposites—synthesis, characterization and industrial applications. Rijeka, InTech

    Google Scholar 

  38. Paunovic M, Schlesinger M (1998) Fundamentals of electrochemical deposition, 1st edn. Wiley, Somerset

    Google Scholar 

  39. Xuetao Y, Yu W, Dongbai S, Hongying Y (2008) Surf Coat Tech 202:1895–1903

    Article  Google Scholar 

  40. Thiemig D, Bund A (2008) Surf Coat Tech 202:2976–2984

    Article  CAS  Google Scholar 

  41. Benea L, Bonora PL, Borello A, Martelli S, Wenger F, Ponthiaux P, Galland J (2002) Solid State Ionics 151:89–95

    Article  CAS  Google Scholar 

  42. Bindiya S, Basavanna S, Naik YA (2012) JMEPEG 21:1879–1884

    Article  CAS  Google Scholar 

  43. Wang RY, Kirk DW, Zhang GX (2007) ECS Transc 2:19–27

    Article  Google Scholar 

  44. Ohtsubo H, Matsumoto T, Nakai K, Ohmori Y (1994) ISIJ Int 34:1002–1007

    Article  CAS  Google Scholar 

  45. Raeissi K, Saatchi A, Golozar MA, Szpunar JA (2005) Surf Coat Technol 197:229–237

    Article  CAS  Google Scholar 

  46. Yan H, Downes J, Boden PJ, Harris SJ (1996) J Electrochem Soc 143:1577–1583

    Article  CAS  Google Scholar 

  47. Alberts D, Fernández B, Frade T, Gomes A, da Silva Pereira MI, Pereiro R, Sanz-Medel A (2011) Talanta 84:572–578

    Article  CAS  Google Scholar 

  48. Frade T, Gomes A, da Silva Pereira MI, Alberts D, Pereiro R, Fernández B (2011) J Electrochem Soc 158:C63–C70

    Article  CAS  Google Scholar 

  49. Power Diffraction File Alphabetical Index (1988) JCPDS-ICDD International Center for Diffraction Data (ed), Files 32-1477,35-910 and 36-1451 for ZnSO4, Zn4SO4(OH)6 and ZnO, respectively. Swarthmore

Download references

Acknowledgments

The authors acknowledge financial support from Fundação para a Ciência e Tecnologia (Portugal) under research project PTDC/CTM/64856/2006. A. Gomes acknowledges PEst-OE/QUI/UI0536/2011 and the Ciência 2007 programme. O.C. Monteiro and C. Nunes acknowledge PEst-OE/QUI/UI0612/2011 and Ciência 2007 programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A., Videira, A., Monteiro, O.C. et al. Pulsed current electrodeposition of Zn–Ag2S/TiO2 nanocomposite films as potential photoelectrodes. J Solid State Electrochem 17, 2349–2359 (2013). https://doi.org/10.1007/s10008-013-2099-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2099-y

Keywords

Navigation