Skip to main content
Log in

Electrochemical and oxygen reduction properties of pristine and nitrogen-doped few layered graphene nanoflakes (FLGs)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Vertically aligned few layered graphene (FLGs) nanoflakes were synthesized by microwave plasma deposition for various time durations ranging from 30 to 600 s to yield graphene films of varying morphology, microstructure and areal/edge density. Their intrinsic electrochemical properties were explored using Fe(CN)6 3−/4− and Ru(NH3)6 3+/2+ redox species. All the FLG electrodes demonstrate fast electron transfer kinetics with near ideal ΔEp values of 60–65 mV. Using a relationship between electron transfer rate and edge plane density, an estimation of the edge plane density was carried out which revealed a moderation of edge plane density with increase in growth time. The pristine FLGs also possess excellent electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline solutions. This ORR activity can be further enhanced by exposing the pristine FLGs to nitrogen electron cyclotron resonance plasma. The metal free N-doped FLGs exhibit much higher electrocatalytic activity towards ORR than pristine FLGs with higher durability and selectivity than Pt-based catalysts. The excellent electrochemical performance of N-doped FLGs is explained in terms of enhanced edge plane exposure, high content of pyridinic nitrogen and an increase in the electronic density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. There is a lot of discrepancy and disparity in the literature regarding the nomenclature used for carbon nanostructures like these such as few-layered graphene nanoflakes, multi-layered graphene petals and carbon nanowalls. Strictly speaking, graphene is a single sheet of sp2 hybridised carbon atoms; hence, the use of term few-layered graphene can be considered as slightly controversial. In the past, we have reported on the synthesis, growth mechanism and applications of these structures wherein they have been addressed as few-layered graphene nanoflakes. So, in order to maintain parity, we continue to call it as few-layered graphene nanoflakes.

References

  1. McCreery RL (2008) Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  2. Rice RJ, McCreery RL (1989) Anal Chem 61:1637–1641

    Article  CAS  Google Scholar 

  3. Dumitrescu I, Unwin PR, Macpherson JV (2009) Chem Commun 45:6886–6901

    Article  Google Scholar 

  4. Brownson DAC, Banks CE (2010) Analyst 135:2768–2778

    Article  CAS  Google Scholar 

  5. Davies TJ, Hyde ME, Compton RG (2005) Angew Chem 117:5251–5256

    Article  Google Scholar 

  6. Hallam PM, Banks CE (2011) Electrochem Commun 13:8–11

    Article  CAS  Google Scholar 

  7. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem 45:2533–2537

    Article  CAS  Google Scholar 

  8. Šljukic B, Banks CE, Richard G (2006) Nano Lett 6:1556–1558

    Article  Google Scholar 

  9. Soin N, Roy SS, O’Kane C, Lim TH, Hetherington CJD, McLaughlin JAD (2011) CrystEnggComm 13:312–318

    Article  CAS  Google Scholar 

  10. Soin N, Roy SS, Roy S, Hazra KS, Misra DS, Lim TH, Hetherington CJD, McLaughlin JAD (2011) J Phys Chem C115:5366–5372

    Google Scholar 

  11. Soin N, Roy SS, Lim TH, McLaughlin JAD (2011) Mater Chem Phys 129(3):1051–1057

    Article  CAS  Google Scholar 

  12. Soin N, Roy SS, Mitra SK, Thundat SK, McLaughlin JAD (2012) J Mater Chem 22:14944–14950

    Article  CAS  Google Scholar 

  13. Pumera M, Sasaki T, Iwai H (2008) Chem Asian J 3:2046–2055

    Article  CAS  Google Scholar 

  14. Yu D, Nagelli E, Du F, Dai L (2010) J Phys Chem Lett 1:2165–2173

    Article  CAS  Google Scholar 

  15. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760

    Article  CAS  Google Scholar 

  16. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350–4358

    Article  CAS  Google Scholar 

  17. Qu L, Liu Y, Baek JB, Dai L (2010) ACS Nano 4:1321–1326

    Article  CAS  Google Scholar 

  18. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) J Mater Chem 20:7491–7496

    Article  CAS  Google Scholar 

  19. Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal, B 79:89–99

    Article  CAS  Google Scholar 

  20. Liu R, Wu D, Feng X, Müllen K (2010) Angew Chem 122:2619–2623

    Article  Google Scholar 

  21. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) J Am Chem Soc 134:15–18

    Article  CAS  Google Scholar 

  22. Lee YH, Lee JH (2009) Appl Phys Lett 95:143102

    Article  Google Scholar 

  23. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Adv Funct Mater 18:3506–3514

    Article  CAS  Google Scholar 

  24. Jones CP, Jurkschat K, Crossley A, Richard G, Riehl BL, Banks CE (2007) Langmuir 23:9501–9504

    Article  CAS  Google Scholar 

  25. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  26. Lin YG, Hsu YK, Wu CT, Chen SY, Chen KH, Chen LC (2009) Diamond Relat Mater 18:433–437

    Article  CAS  Google Scholar 

  27. Zoski CG (2007) Handbook of electrochemistry. Elsevier, Netherlands

    Google Scholar 

  28. Bard AJ, Faulkner LR (2001) Electrochemical Methods-Fundamentals and applications. John Wiley & Sons

  29. Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Anal Chem 76:1083–1088

    Article  CAS  Google Scholar 

  30. Salinas-Torres D, Huerta F, Montilla F, Morallón E (2011) Electrochim Acta 56:2464–2470

    Article  CAS  Google Scholar 

  31. Pacios M, Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619:117–124

    Google Scholar 

  32. Nicholson RS (1965) Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  33. Luais E, Boujtita M, Gohier A, Tailleur A, Casimirius S, Djouadi MA, Granier A, Tessier PY (2010) Appl Phys Lett 96:126103

    Article  Google Scholar 

  34. Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797–808

    Article  CAS  Google Scholar 

  35. Kobayashi K (1993) Phys Rev B 48:1757

    Article  CAS  Google Scholar 

  36. Ji X, Banks CE, Crossley A, Compton RG (2006) ChemPhysChem 7:1337–1344

    Article  CAS  Google Scholar 

  37. Yang SY, Chang KH, Huang YL, Lee YF, Tien HW, Li SM, Lee YH, Liu CH, Ma CM, Hu CC (2012) Electrochem Commun 14:39–42

    Article  Google Scholar 

  38. Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W (2009) J Phys Chem C 113:14302–14310

    Article  CAS  Google Scholar 

  39. Yeager E (1986) J Mol Catal 38:5–25

    Article  CAS  Google Scholar 

  40. Paliteiro C, Hamnett A, Goodenough JB (1987) J Electroanal Chem 233:147–159

    Article  CAS  Google Scholar 

  41. Abbas G, Papakonstantinou P, Iyer GRS, Kirkman IW, Chen CL (2007) Phys Rev B 75:195429

    Article  Google Scholar 

  42. Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622–2627

    Article  CAS  Google Scholar 

  43. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787–1793

    Article  CAS  Google Scholar 

  44. Okamoto Y (2009) Appl Surf Sci 256:335–341

    Article  CAS  Google Scholar 

  45. Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83–96

    Article  CAS  Google Scholar 

  46. Wiggins-Camacho JD, Stevenson KJ (2009) J Phys Chem C 113:19082–19090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Soin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soin, N., Roy, S.S., Sharma, S. et al. Electrochemical and oxygen reduction properties of pristine and nitrogen-doped few layered graphene nanoflakes (FLGs). J Solid State Electrochem 17, 2139–2149 (2013). https://doi.org/10.1007/s10008-013-2073-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2073-8

Keywords

Navigation