Journal of Solid State Electrochemistry

, Volume 17, Issue 7, pp 1977–1984 | Cite as

Growth of vertically aligned carbon nanotubes on carbon fiber: thermal and electrochemical treatments

  • D. A. L. AlmeidaEmail author
  • E. F. Antunes
  • V. Q. da Silva
  • M. R. Baldan
  • N. G. Ferreira
Original Paper


Composite electrodes of vertically aligned carbon nanotubes (VACNT) were synthesized on carbon fiber (CF) substrate by pyrolysis of camphor/ferrocene using a SiO2 interlayer as a barrier against metal diffusion into the substrate. Two treatments were used to remove iron from CF/VACNT structure: thermal annealing at high temperature under inert atmosphere and electrochemical oxidation in H2SO4 solution. The composites were characterized by scanning electron microscopy and Raman scattering spectroscopy. Besides, the electrochemical behavior of CF/VACNT was analyzed by cyclic voltammetry and charge/discharge tests. CF/VACNT composite submitted to the electrochemical oxidation showed the best electrochemical performance, with high specific capacitance, which makes it very attractive as electrode for supercapacitors.


Carbon fiber Carbon nanotube Composite Supercapacitors 



We would like to thanks M.L. Brison by the SEM images. Special thanks to Fundação de Amparo à Pesquisa do Estado de São Paulo FAPESP by the financial support ( Process 2009/17584-0)


  1. 1.
    Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:1–27CrossRefGoogle Scholar
  2. 2.
    Bordjiba T, Mohamedi M, Dao LH (2007) Binderless carbon nanotube/carbon fibre composites for electrochemical micropower sources. Nanotechnology 18Google Scholar
  3. 3.
    Firsich DW (1997) Binderless carbon capacitor electrodes produced by polymer pyrolysis. Electrochem Soc Proc 96:235–242Google Scholar
  4. 4.
    Rosolen JM, Matsubara EY, Marchesin MS, Lala SM, Montoro LA, Tronto S (2006) Carbon nanotube/felt composite electrodes without polymer binders. J Power Sources 162:620–628CrossRefGoogle Scholar
  5. 5.
    Resende VG, Antunes EF, Lobo AO, Oliveira DAL, TravaAiroldi VJ, Corat EJ (2010) Carbon 48:3655–3658CrossRefGoogle Scholar
  6. 6.
    Lv P, Feng Y-y, Zhang P, Chen H-m, Zhao N, Feng W (2011) Carbon 49:4665–4673CrossRefGoogle Scholar
  7. 7.
    An F, Lu C, Guo J, He S, Lu H, Yang Y (2011) Appl Surf Sci 258:1069–1076CrossRefGoogle Scholar
  8. 8.
    Li C, Wang D, Wang X, Liang J (2005) Carbon 43:1557–1583CrossRefGoogle Scholar
  9. 9.
    Kim J-I, Rhee K-Y, Park S-J (2012) J Coll Interf Sci 377:307–312CrossRefGoogle Scholar
  10. 10.
    Obradovic MD, Vukovic GD, Stevanovic SI, Panic VV, UsKokovic PS, Kowal A, Gojcovic SL (2009) A comparative study of the electrochemical properties of carbon nanotubes and carbon black. J Electroanal Chem 634:22–30CrossRefGoogle Scholar
  11. 11.
    Weng T-W, Huang W, Lee K-Y (2009) Vacuum 83:629–632CrossRefGoogle Scholar
  12. 12.
    Seo M-K, Park S-J (2010) Curr Appl Phys 10:241–244CrossRefGoogle Scholar
  13. 13.
    Liu CG, Fang HT, Li F, Liu M, Cheng HM (2006) J Power Sources 160:758–761CrossRefGoogle Scholar
  14. 14.
    Antunes EF, Silva VQ, Caetano VEM., Siqueira L, Corat EJ (2012) Growth of carbon nanotube forests on carbon fibers with a SiO2 interlayer. MRS Spring Meeting (Boston USA)Google Scholar
  15. 15.
    Antunes EF, Almeida EC, Rosa CBF, Medeiros LI, Pardini LC, Massi M, Corat EJ (2010) Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures. J Nanosci Nanotechnol 10:1296–1303CrossRefGoogle Scholar
  16. 16.
    Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin A, Veríssimo C (2006) Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44:2202–2211CrossRefGoogle Scholar
  17. 17.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47–99CrossRefGoogle Scholar
  18. 18.
    TSE-HAO KO (1996) Raman spectrum of modified PAN-based carbon fiber during graphitization. J Appl Pol Sci 59:577–580CrossRefGoogle Scholar
  19. 19.
    Morita K, Murata Y, Ishitani A, Murayama K, Ono T, Nakajima A (1986) Characterization of commercially available Pan (polyacrylonitrile)-based carbon fibers. Pure Appl Chem 58:455–468CrossRefGoogle Scholar
  20. 20.
    Ferrari AC, Robertson J (2000) Phys Rev B 61:14095–14107CrossRefGoogle Scholar
  21. 21.
    Ferrari AC, Robertson J (2001) Physical Review B 64:075414-1–075414-13Google Scholar
  22. 22.
    Ebbesen TW, Takada T (1995) Carbon 33:973–978CrossRefGoogle Scholar
  23. 23.
    Matthews MJ, Pimenta MA, Dresselhaus G, Endo M (1999) Phys Rev B 59:R6585–R6588CrossRefGoogle Scholar
  24. 24.
    Kinoshita K (1987) Carbon electrochemical and physicochemical properties. Wiley, New YorkGoogle Scholar
  25. 25.
    Andreas HA, Conway BE (2006) Electrochim Acta 51:15–21Google Scholar
  26. 26.
    Soneda Y, Yamashita J, Kodama M, Kodama H, Hatori H, Toyoda M, Inagaki M (2006) Pseudo-capacitance on exfoliated carbon fiber in sulfuric acid electrolyte. Appl Phys A 82:575–578CrossRefGoogle Scholar
  27. 27.
    Wang G, Ling Y, Qian F, Yang X, Liu XX, Li Y (2011) Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. J Power Sources 196:5209–5214CrossRefGoogle Scholar
  28. 28.
    Li H, Jixiao W, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586CrossRefGoogle Scholar
  29. 29.
    Frackowiak E, Béguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. A. L. Almeida
    • 1
    Email author
  • E. F. Antunes
    • 2
  • V. Q. da Silva
    • 1
  • M. R. Baldan
    • 1
  • N. G. Ferreira
    • 1
  1. 1.Laboratório Associado de Sensores e MateriaisInstituto Nacional de Pesquisas Espaciais—INPESão José dos CamposBrazil
  2. 2.Universidade Federal de São Paulo—UNIFESPSão José dos CamposBrazil

Personalised recommendations