Skip to main content
Log in

The production of activated carbon from cation exchange resin for high-performance supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High-performance activated carbon for electrochemical double-layer capacitors (EDLC) has been prepared from cation exchange resin by carbonization and subsequent activation with KOH. The activation temperature has a key role in the determination of porous carbon possessing high surface areas, and large pore structures. The porous carbon activated at 700 °C (carbon-700-1:4) has high surface area (2236 m2 g−1) and large total pore volume (1.15 cm3 g−1), which also displays best capacitive performances due to its well-balanced micro- or mesoporosity distribution. In details, specific capacitances of the carbon-700-1:4 sample are 336.5 F g−1 at a current density of 1 A g−1 and 331.8 F g−1 at 2 A g−1. At high current density as 20 A g−1, the retention of its specific capacitance is 68.4 %. The carbon-700-1:4 sample also exhibits high performance of energy density (46.7 Wh kg−1) and long cycle stability (∼8.9 % loss after 3,000 cycles). More importantly, due to the amount of waste ion-exchange resins increasing all over the world, the present synthetic method might be adopted to dispose them, producing high-performance porous carbons for EDLC electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gogotsi Y, Simon P (2011) Science 334:917–918

    Article  CAS  Google Scholar 

  2. Kötz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Frackowiak E, Béguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  5. Nishihara H, Kyotani T (2012) Adv Mater 24:4473–4498

    Article  CAS  Google Scholar 

  6. Xia Y, Yang Z, Mokaya R (2010) Nanoscale 2:639–659

    Article  CAS  Google Scholar 

  7. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  8. Wang J, Kaskel S (2012) J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  9. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  10. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  11. Xing W, Huang CC, Zhuo SP, Yuan X, Wang GQ, Hulicova-Jurcakova D, Yan ZF, Lu GQ (2009) Carbon 47:1715–1722

    Article  CAS  Google Scholar 

  12. Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao DY (2012) J Mater Chem 22:93–99

    Article  CAS  Google Scholar 

  13. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I (2004) Carbon 42:1723–1729

    Article  CAS  Google Scholar 

  14. Li X, Han C, Chen X, Shi C (2010) Microporous Mesoporous Mater 131:303–309

    Article  CAS  Google Scholar 

  15. Nakagawa H, Watanabe K, Harada Y, Miura K (1999) Carbon 37:1455–1461

    Article  CAS  Google Scholar 

  16. Nezu A, Morishima T, Watanable T (2003) Thin Solid Films 435:335–339

    Article  CAS  Google Scholar 

  17. Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) J Am Chem Soc 134:2864–2867

    Article  CAS  Google Scholar 

  18. Díaz-Terán J, Nevskaia DM, Fierro JLG, López-Peinado AJ, Jerez A (2003) Microporous Mesoporous Mater 60:173–181

    Article  Google Scholar 

  19. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Carbon 41:267–275

    Article  Google Scholar 

  20. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanotechnol 23:015401

    Article  CAS  Google Scholar 

  21. Yang S, Hu H, Chen G (2002) Carbon 40:277–284

    Article  CAS  Google Scholar 

  22. Liang Y, Feng X, Zhi L, Kolb U, Müllen K (2009) Chem Commun (7):809–811

  23. Li F, Morris M, Chan KY (2011) J Mater Chem 21:8880–8886

    Article  CAS  Google Scholar 

  24. Radhakrishnan L, Reboul J, Furukawa S, Srinivasu P, Kitagawa S, Yamauchi Y (2011) Chem Mater 23:1225–1231

    Article  CAS  Google Scholar 

  25. Jiang HL, Liu B, Lan YQ, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) J Am Chem Soc 133:11854–11857

    Article  CAS  Google Scholar 

  26. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) Carbon 43:153–161

    Article  CAS  Google Scholar 

  27. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Carbon 46:833–840

    Article  CAS  Google Scholar 

  28. Pevida C, Drage TC, Snape CE (2008) Carbon 46:1464–1474

    Article  CAS  Google Scholar 

  29. Deitzel JM, Kosik W, McKnight SH, Beck Tan NC, DeSimone JM, Crette S (2002) Polymer 43:1025–1029

    Article  CAS  Google Scholar 

  30. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Carbon 47:145–152

    Article  CAS  Google Scholar 

  31. Coullerez G, Léonard D, Lundmark S, Mathieu HJ (2000) Surf Interface Anal 29:431–443

    Article  CAS  Google Scholar 

  32. Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A (2003) Carbon 41:1765–1775

    Article  Google Scholar 

  33. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Electrochim Acta 50:2799–2805

    Article  CAS  Google Scholar 

  34. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH (2012) ACS NANO 6:7092–7102

    Article  CAS  Google Scholar 

  35. Kötz R, Hahn M, Gallay R (2006) J Power Sources 154:550–555

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230039, China (KF2012009). Dr. Xiang Ying Chen also thanks the financial support from the National Natural Science Foundation of China (21101052) and China Postdoctoral Science Foundation (20100480045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Cui or Xiang Ying Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(a) Cyclic voltammograms at the scan rates of 50 mV s−1; (b) galvanostatic charge–discharge curves measured at the current density of 4 A g−1; (c) specific capacitances at various current densities; (d) cycling stability of the carbon samples. (DOC 881 kb)

Figure S2

(a) Ragone plots showing energy density vs. power density of the carbon samples; (b) Nyquist plots before/after 50 cycles of the carbon samples. (DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.J., Cui, P., Chen, X.Y. et al. The production of activated carbon from cation exchange resin for high-performance supercapacitor. J Solid State Electrochem 17, 1749–1758 (2013). https://doi.org/10.1007/s10008-013-2039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2039-x

Keywords

Navigation