Skip to main content
Log in

Electrochemical and physical characterization of Pt–Ru alloy catalyst deposited onto microporous–mesoporous carbon support derived from Mo2C at 600 °C

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical reduction of oxygen on binary Pt–Ru alloy deposited onto microporous–mesoporous carbon support was studied in 0.5 M H2SO4 solution using cyclic voltammetry, rotating disk electrode (RDE), and impedance method. The microporous–mesoporous carbon support C(Mo2C) with specific surface area of 1,990 m2 g−1 was prepared from Mo2C at 600 °C using the chlorination method. Analysis of X-ray diffraction, photoelectron spectroscopy, and high-resolution transmission electron microscopy data confirms that the Pt–Ru alloy has been formed and the atomic fraction of Ru in the alloy was ∼0.5. High cathodic oxygen reduction current densities (−160 A m−2 at 3,000 rev min−1) have been measured by the RDE method. The O2 diffusion constant (1.9 ± 0.3 × 10−5 cm2 s−1) and the number of electrons transferred per electroreduction of one O2 molecule (∼4), calculated from the Levich and Koutecky–Levich plots, are in agreement with literature data. Similarly to the Ru/RuO2 system in H2SO4 aqueous solution, nearly capacitive behavior was observed from impedance data at very low ac frequencies, explained by slow electrical double-layer formation limited by the adsorption of reaction intermediates and products into microporous–mesoporous Pt–Ru–C(Mo2C) catalyst. All results obtained for C(Mo2C) and Pt–Ru–C(Mo2C) electrodes have been compared with corresponding data for commercial carbon VULCAN® XC72 (C(Vulcan)) and Pt–Ru–C(Vulcan) electrodes processed and measured in the same experimental conditions. Higher activity for C(Mo2C) and Pt–Ru–C(Mo2C) has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chai GS, Yoon SB, Yu J-S, Choi J-H, Sung Y-E (2004) Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 108:7074–7079

    Article  CAS  Google Scholar 

  2. Gottesfeld S, Raistrick ID, Srinivasan S (1987) Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film. J Electrochem Soc 134:1455–1462

    Article  CAS  Google Scholar 

  3. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24

    Article  CAS  Google Scholar 

  4. Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240

    Article  CAS  Google Scholar 

  5. Chang W-C, Nguyen MT (2011) Investigations of a platinum–ruthenium/carbon nanotube catalyst formed by a two-step spontaneous deposition method. J Power Sources 196:5811–5816

    Article  CAS  Google Scholar 

  6. Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun M-S, Hong S, Lim S, Yoon S-H, Mochida I (2006) Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Langmuir 23:387–390

    Article  Google Scholar 

  7. Liu Z, Zhang X, Tay S (2012) Nanostructured PdRu/C catalysts for formic acid oxidation. J Solid State Electrochem 16:545–550

    Article  CAS  Google Scholar 

  8. Wang Z-B, Zhao C-R, Shi P-F, Yang Y-S, Yu Z-B, Wang W-K, Yin G-P (2010) Effect of a carbon support containing large mesopores on the performance of a Pt–Ru–Ni/C catalyst for direct methanol fuel cells. J Phys Chem C 114:672–677

    Article  CAS  Google Scholar 

  9. Woo J-Y, Lee K-M, Jee B-C, Ryu C-H, Yoon C-H, Chung J-H, Kim Y-R, Moon S-B, Kang A-S (2010) Electrocatalytic characteristics of Pt–Ru–Co and Pt–Ru–Ni based on covalently cross-linked sulfonated poly(ether ether ketone)/heteropolyacids composite membranes for water electrolysis. J Ind Eng Chem 16:688–697

    Article  CAS  Google Scholar 

  10. Freund A, Lang J, Lehmann T, Starz KA (1996) Improved Pt alloy catalysts for fuel cells. Catal Today 27:279–283

    Article  CAS  Google Scholar 

  11. Seo A, Lee J, Han K, Kim H (2006) Performance and stability of Pt-based ternary alloy catalysts for PEMFC. Electrochim Acta 52:1603–1611

    Article  CAS  Google Scholar 

  12. Luo J, Kariuki N, Han L, Wang L, Zhong C-J, He T (2006) Preparation and characterization of carbon-supported PtVFe electrocatalysts. Electrochim Acta 51:4821–4827

    Article  CAS  Google Scholar 

  13. Thungprasert S, Sarakonsri T, Klysubun W, Vilaithong T (2011) Preparation of Pt-based ternary catalyst as cathode material for proton exchange membrane fuel cell by solution route method. J Alloys Compd 509:6812–6815

    Article  CAS  Google Scholar 

  14. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  CAS  Google Scholar 

  15. Gara M, Compton RG (2011) Activity of carbon electrodes towards oxygen reduction in acid: a comparative study. New J Chem 35:2647

    Article  CAS  Google Scholar 

  16. Kruusenberg I, Leis J, Arulepp M, Tammeveski K (2010) Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution. J Solid State Electrochem 14:1269–1277

    Article  CAS  Google Scholar 

  17. Anastasijević NA, Dimitrijević ZM, Adžić RR (1986) Oxygen reduction on a ruthenium electrode in alkaline electrolytes. J Electroanal Chem Interfacial Electrochem 199:351–364

    Article  Google Scholar 

  18. Anastasijević NA, Dimitrijević ZM, Adžić RR (1986) Oxygen reduction on a ruthenium electrode in acid electrolytes. Electrochim Acta 31:1125–1130

    Article  Google Scholar 

  19. Inoue H, Brankovic SR, Wang JX, Adžić RR (2002) Oxygen reduction on bare and Pt monolayer-modified Ru(0001), \( \mathrm{Ru}\left( {10\overline{1}0} \right) \) and Ru nanostructured surfaces. Electrochim Acta 47:3777–3785

    Article  CAS  Google Scholar 

  20. Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, Adzic RR (2003) Pt submonolayers on metal nanoparticles—novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim Acta 48:3841–3849

    Article  CAS  Google Scholar 

  21. Climent V, Marković NM, Ross PN (2000) Kinetics of oxygen reduction on an epitaxial film of palladium on Pt(111). J Phys Chem B 104:3116–3120

    Article  CAS  Google Scholar 

  22. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction An in situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  23. Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J Electroanal Chem 460:258–262

    Article  CAS  Google Scholar 

  24. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. In: Bruce C, Gates HK (eds) Advances in catalysis. Academic, New York, pp 71–129

    Google Scholar 

  25. Guinel MJ-F, Bonakdarpour A, Wang B, Babu PK, Ernst F, Ramaswamy N, Mukerjee S, Wieckowski A (2009) Carbon-supported, selenium-modified ruthenium–molybdenum catalysts for oxygen reduction in acidic media. ChemSusChem 2:658–664

    Article  CAS  Google Scholar 

  26. Tsiouvaras N, Martínez-Huerta MV, Paschos O, Stimming U, Fierro JLG, Peña MA (2010) PtRuMo/C catalysts for direct methanol fuel cells: effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int J Hydrogen Energy 35:11478–11488

    Article  CAS  Google Scholar 

  27. Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells: part I. Preparation methods and structural characteristics. Appl Catal B Environ 74:324–336

    Article  CAS  Google Scholar 

  28. Grgur BN, Markovic NM, Ross PN (1998) Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. J Phys Chem B 102:2494–2501

    Article  CAS  Google Scholar 

  29. Ishikawa Y, Liao M-S, Cabrera CR (2000) Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study. Surf Sci 463:66–80

    Article  CAS  Google Scholar 

  30. Koper MTM, Shubina TE, Van Santen RA (2002) Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J Phys Chem B 106:686–692

    Article  CAS  Google Scholar 

  31. Liao M-S, Cabrera CR, Ishikawa Y (2000) A theoretical study of CO adsorption on Pt, Ru and Pt–M (M = Ru, Sn, Ge) clusters. Surf Sci 445:267–282

    Article  CAS  Google Scholar 

  32. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:275–283

    Article  CAS  Google Scholar 

  33. Lust E, Nurk G, Jänes A, Arulepp M, Nigu P, Möller P, Kallip S, Sammelselg V (2003) Electrochemical properties of nanoporous carbon electrodes in various nonaqueous electrolytes. J Solid State Electrochem 7:91–105

    CAS  Google Scholar 

  34. Jänes A, Thomberg T, Kurig H, Lust E (2009) Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon 47:23–29

    Article  Google Scholar 

  35. Thomberg T, Jänes A, Lust E (2009) Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J Electroanal Chem 630:55–62

    Article  CAS  Google Scholar 

  36. Thomberg T, Kurig H, Jänes A, Lust E (2011) Mesoporous carbide-derived carbons prepared from different chromium carbides. Micropor Mesopor Mater 141:88–93

    Article  CAS  Google Scholar 

  37. Jänes A, Thomberg T, Lust E (2007) Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide. Carbon 45:2717–2722

    Article  Google Scholar 

  38. Jänes A, Permann L, Arulepp M, Lust E (2004) Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. Electrochem Commun 6:313–318

    Article  Google Scholar 

  39. Álvarez G, Alcaide F, Miguel O, Calvillo L, Lázaro M, Quintana J, Calderón J, Pastor E (2010) Technical electrodes catalyzed with PtRu on mesoporous ordered carbons for liquid direct methanol fuel cells. J Solid State Electrochem 14:1027–1034

    Article  Google Scholar 

  40. Antolini E, Cardellini F (2001) Formation of carbon supported PtRu alloys: an XRD analysis. J Alloys Compd 315:118–122

    Article  CAS  Google Scholar 

  41. Lakshminarayanan V, Srinivasan R, Chu D, Gilman S (1997) Area determination in fractal surfaces of Pt and Pt–Ru electrodes. Surf Sci 392:44–51

    Article  CAS  Google Scholar 

  42. Tarasevich MR, Sadkowski A, Yeager E, Conway BE, Sockris JO, Yeager E, Khan SUM, White RE (1983) Comprehensive treatise of electrochemistry, 7th edn. Plenum, New York

    Google Scholar 

  43. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  44. Adžić R, Lipkowski J, Ross PN (1988) Electrocatalysis. Wiley-VCH, New York

    Google Scholar 

  45. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  46. Ravikovitch PI, Neimark AV (2001) Characterization of nanoporous materials from adsorption and desorption isotherms. Colloid Surf A 187–188:11–21

    Article  Google Scholar 

  47. Siegbahn K, Nordling C, Johansson G et al (1969) ESCA applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  48. Bagus PS, Wőll C, Wieckowski A (2009) Dependence of surface properties on adsorbate–substrate distance: work function changes and binding energy shifts for I/Pt(111). Surf Sci 603:273–283

    Article  CAS  Google Scholar 

  49. Corcoran CJ, Tavassol H, Rigsby MA, Bagus PS, Wieckowski A (2010) Application of XPS to study electrocatalysts for fuel cells. J Power Sources 195:7856–7879

    Article  CAS  Google Scholar 

  50. Sun A, Franc J, Macdonald DD (2006) Growth and properties of oxide films on platinum. J Electrochem Soc 153:B260

    Article  CAS  Google Scholar 

  51. Giorgi R, Ascarelli P, Turtù S, Contini V (2001) Nanosized metal catalysts in electrodes for solid polymeric electrolyte fuel cells: an XPS and XRD study. Appl Surf Sci 178:149–155

    Article  CAS  Google Scholar 

  52. Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  53. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  54. Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  55. Macdonald JR (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  56. Z view for Windows (version 3.3c) fitting program (2012) Southern Pines, NC, USA

  57. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Plenum, New York

    Book  Google Scholar 

  58. Orazem ME, Pébère N, Tribollet B (2006) Enhanced graphical representation of electrochemical impedance data. J Electrochem Soc 153:B129

    Article  CAS  Google Scholar 

  59. Hadži-Jordanov S, Angerstein-Kozlowska H, Conway BE (1975) Surface oxidation and H deposition at ruthenium electrodes: resolution of component processes in potential-sweep experiments. J Electroanal Chem Interfacial Electrochem 60:359–362

    Article  Google Scholar 

  60. Trasatti S, Buzzanca G (1971) Electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem 29:1–5

    Google Scholar 

  61. Galizzioli D, Tantardini F, Trasatti S (1974) Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes. J Appl Electochem 4:57–67

    Article  CAS  Google Scholar 

  62. Goodenough JB (1971) Progress in solid state chemistry. In: Reiss H (ed). Pergamon, New York

  63. Schäfer H, Schneidereit G, Gerhardt W (1963) Zur Chemie der Platinmetalle. RuO2 Chemischer Transport, Eigenschaften, thermischer Zerfall. Z Anorg Alllg Chem 319:327–336

    Article  Google Scholar 

  64. Hadži-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Conway BE (1978) Reversibility and growth behavior of surface oxide films at ruthenium electrodes. J Electrochem Soc 125:1471–1480

    Article  Google Scholar 

  65. Liu T, Pell WG, Conway BE (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42:3541–3552

    Article  CAS  Google Scholar 

  66. Arikado T, Iwakura C, Tamura H (1977) Electrochemical behaviour of the ruthenium oxide electrode prepared by the thermal decomposition method. Electrochim Acta 22:513–518

    Article  CAS  Google Scholar 

  67. Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35:263–267

    Article  CAS  Google Scholar 

  68. Burke LD, O’Sullivan EJM (1981) Oxygen gas evolution on hydrous oxides—an example of three-dimensional electrocatalysis? J Electroanal Chem Interfacial Electrochem 117:155–160

    Article  CAS  Google Scholar 

  69. Burke LD, Murphy OJ (1979) Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. J Electroanal Chem Interfacial Electrochem 96:19–27

    Article  CAS  Google Scholar 

  70. Van Brussel M, Kokkinidis G, Vandendael I, Buess-Herman C (2002) High performance gold-supported platinum electrocatalyst for oxygen reduction. Electrochem Commun 4:808–813

    Article  Google Scholar 

  71. Markovic NM, Gasteiger HA, Ross PN (1995) Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies. J Phys Chem 99:3411–3415

    Article  CAS  Google Scholar 

  72. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109:14433–14440

    Article  CAS  Google Scholar 

  73. Maciá MD, Campiña JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564:141–150

    Article  Google Scholar 

  74. Kuzume A, Herrero E, Feliu JM (2007) Oxygen reduction on stepped platinum surfaces in acidic media. J Electroanal Chem 599:333–343

    Article  CAS  Google Scholar 

  75. Lide DL (2001) CRC handbook of chemistry and physics, 82nd edn. CRC, Boca Raton

    Google Scholar 

  76. Fiechter S, Dorbandt I, Bogdanoff P, Zehl G, Schulenburg H, Tributsch H, Bron M, Radnik J, Fieber-Erdmann M (2006) Surface modified ruthenium nanoparticles: structural investigation and surface analysis of a novel catalyst for oxygen reduction. J Phys Chem C 111:477–487

    Article  Google Scholar 

  77. Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabián J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923

    Article  Google Scholar 

  78. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Cat 38:5–25

    Article  CAS  Google Scholar 

  79. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  80. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12. J Electroanal Chem 517:85–94

    Article  CAS  Google Scholar 

  81. Sarapuu A, Kallip S, Kasikov A, Matisen L, Tammeveski K (2008) Electroreduction of oxygen on gold-supported thin Pt films in acid solutions. J Electroanal Chem 624:144–150

    Article  CAS  Google Scholar 

  82. Damjanovic A, Genshaw MA (1970) Dependence of the kinetics of O2 dissolution at Pt on the conditions for adsorption of reaction intermediates. Electrochim Acta 15:1281–1283

    Article  CAS  Google Scholar 

  83. Tarasevich M (1973) Investigation of the parallel-consecutive stage of oxygen and hydrogen peroxide reaction. Mechanism of oxygen electroreduction at platinum metals. Electrokimiya 5:599–605

    Google Scholar 

  84. Marković NM, Adžić RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377:249–259

    Article  Google Scholar 

  85. Tilak BV, Chen C-P, Birss VI, Wang J (1997) Capacitive and kinetic characteristics of Ru–Ti oxide electrodes: influence of variation in the Ru content. Can J Chem 75:1773–1782

    Article  CAS  Google Scholar 

  86. Eskusson J, Jänes A, Kikas A, Matisen L, Lust E (2011) Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. J Power Sources 196:4109–4116

    Article  CAS  Google Scholar 

  87. Khomenko V, Raymundo-Piñero E, Frackowiak E, Béguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A 82:567–573

    Article  CAS  Google Scholar 

  88. Fic K, Lota G, Frackowiak E (2010) Electrochemical properties of supercapacitors operating in aqueous electrolyte with surfactants. Electrochim Acta 55:7484–7488

    Article  CAS  Google Scholar 

  89. Lasia A (2006) On the mechanism of the hydrogen absorption reaction. J Electroanal Chem 593:159–166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Estonian Target Research project SF0180002s08, Estonian Energy Technology Program project SLOKT10209T, Estonian Center of Excellence project: High technology materials for sustainable development (3.2.0101.11-0030), and ETF Grant 8267. The authors thank Mr. J. Aruväli and Prof. K. Kirsimägi for performing the XRD and XRF measurements and analysis of data and Prof. K. Kontturi for the HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaarmets, K., Sepp, S., Nerut, J. et al. Electrochemical and physical characterization of Pt–Ru alloy catalyst deposited onto microporous–mesoporous carbon support derived from Mo2C at 600 °C. J Solid State Electrochem 17, 1729–1741 (2013). https://doi.org/10.1007/s10008-013-2030-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2030-6

Keywords

Navigation