Skip to main content
Log in

Electrodeposited nanostructured Pt–Ru co-catalyst on graphene for the electrocatalytic oxidation of formaldehyde

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of formaldehyde over graphene surfaces modified with Pt–Ru co-catalyst is presented. Graphene was chemically converted from graphite and Pt–Ru co-catalyst was electrochemically deposited using cyclic voltammetry. The hybrid surface is prepared using “green approaches” and displayed electrocatalytic activity towards formaldehyde in the form of current oscillations. The current oscillations that were mainly due to adsorption/desorption of carbonaceous oxidative products are a factor of several parameters such as the concentrations of both formaldehyde and supporting electrolyte in solution, the amount of catalyst loading, scan rate of potential, upper potential limit, and the temperature change. CCG/Pt–Ru exhibited higher electrocatalytic activity toward formaldehyde electro-oxidation, and intense electrochemical current oscillations were obtained at relatively low HCHO concentrations compared to other work mentioned in literature for CCG/Pt–Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Selvaraj V, Alagar M (2007) Electrochem Commun 9:1145–1153

    Article  CAS  Google Scholar 

  2. Zhang X-G, Murakami Y, Yahikozawa K, Takasu Y (1997) Electrochim Acta 42:223–227

    Article  CAS  Google Scholar 

  3. Gao G-Y, Guo D-J, Li H-L (2006) J Power Sources 162:1094–1098

    Article  CAS  Google Scholar 

  4. Raoof JB, Karimi MA, Hosseini SR, Mangelizade S (2011) Int J Hydrogen Energ 36:13281–13287

    Article  CAS  Google Scholar 

  5. Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhões LOS (2004) Electrochim Acta 49:3909–3916

    Article  CAS  Google Scholar 

  6. de Lima RB, Massafera MP, Batista EA, Iwasita T (2007) J Electroanal Chem 603:142–148

    Article  Google Scholar 

  7. Zhang C, He H, Tanaka K-J (2005) Catal Commun 6:211–214

    Article  CAS  Google Scholar 

  8. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Chem Eng J 118:119–125

    Article  CAS  Google Scholar 

  9. Chen HJ, Ishigami M, Jang C, Hines DR, Fuhrer MS, Williams ED (2007) Adv Mater 19:3623–3627

    Article  CAS  Google Scholar 

  10. Leenearts O, Partoens B, Peeters FM (2009) Microelectr J 40:860–862

    Article  Google Scholar 

  11. S. Mikhailov (ed) (2011) Physics and applications of grapheme—experiments. In Tech Janeza Trdine, Rijeka, Croatia

  12. Wintterling J, Bocquet M-L (2009) Surf Sci 603:1841–1852

    Article  Google Scholar 

  13. Pool CJ (2010) Solid State Commun 150:632–635

    Article  Google Scholar 

  14. Li Y, Tang L, Li J (2009) Electrochem Commun 11:846–849

    Article  Google Scholar 

  15. P-Inga Z, Murry JS, Grice ME, Boyd S, O’Conner CJ, Politzer P (2001) J Mol Struct (THEOCHEM) 549:147–158

    Article  Google Scholar 

  16. Novoselov KS, Geim AK, Jiang D, Morozov V, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  17. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) ACS Nano 4:43–48

    Article  CAS  Google Scholar 

  18. Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Carbon 48:781–787

    Article  CAS  Google Scholar 

  19. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Electrochim Acta 55:3909–3914

    Article  CAS  Google Scholar 

  20. Wu J, Wang Y, Zhang D, Hou B (2011) J Power Sources 196:1141–1144

    Article  CAS  Google Scholar 

  21. Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) J Power Sources 195:4628–4633

    Article  CAS  Google Scholar 

  22. Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh Y-L, Zhang Y, Mabudian R, Javey A (2010) Appl Phys Lett 96:063110–063113

    Article  Google Scholar 

  23. Motheo AJ, Gonzalez ER, T-Filho G, Olivi P, de Andrade AR, Kokoh B, Léger JM, Belgsir EM, Lamy C (2000) J Braz Chem Soc 11:16–21

    Article  CAS  Google Scholar 

  24. Wojtowicz J (1973) In: Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry. Plenum, New York

    Google Scholar 

  25. Hudson JL, Tsotsis TT (1994) Chem Eng Sci 49:1493–1572

    Article  CAS  Google Scholar 

  26. Schell M, Albahadily FN, Safar J, Xu Y (1989) J Phys Chem 93:4806–4810

    Article  CAS  Google Scholar 

  27. Zhao G, Tang Y, Chen R, Geng R, Li D (2008) Electrochim Acta 53:5186–5194

    Article  CAS  Google Scholar 

  28. Xu Y, Schell M (1990) J Phys Chem 94:7137–7143

    Article  CAS  Google Scholar 

  29. Okamoto H, Tanaka N, Naito M (1998) J Phys Chem A 102:7343–7352

    Article  CAS  Google Scholar 

  30. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  31. Hassan HMA, Abdelsayed V, Khder AS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) J Mater Chem 19:3832–3837

    Article  CAS  Google Scholar 

  32. Hunger HF (1968) J Electrochem Soc 115:492–497

    Article  CAS  Google Scholar 

  33. Chen Q-S, Solla-Gullón J, Sun S-G, Feliu JM (2010) Electrochim Acta 55:7982–7994.

    Google Scholar 

  34. Mishina E, Karantonis A, Yu Q-K, Nakabayashi S (2002) J Phys Chem B 106:10199–10204

    Article  CAS  Google Scholar 

  35. Okamoto H, Tanaka N, Naito M (1996) Chem Phys Lett 248:289–295

    Article  CAS  Google Scholar 

  36. Okamoto H, Tanaka N (1993) Electrochim Acta 38:503–509

    Article  CAS  Google Scholar 

  37. Nakabayashi S, Kira A (1992) J Phys Chem 96:1021–1023

    Article  CAS  Google Scholar 

  38. Galal A, Atta NF, Darwish SA, Ali SM (2008) Top Catalysis 47:73–83

    Article  CAS  Google Scholar 

  39. Gao H, Liao S, Zeng J, Xie Y (2011) J Power Sources 196:54–61

    Article  CAS  Google Scholar 

  40. Strbac S, Ivic MA (2009) Electrochim Acta 54:5408–5412

    Article  CAS  Google Scholar 

  41. Tusseeva EK, Mikhaylova AA, Khazova OA, Kourtakis KD (2004) Russ J Electrochem 40:1146–1151

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from Cairo University through the President Office for Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Galal.

Additional information

This paper is a contribution to recognize Prof. Alexander Milchev on the occasion of his 70th birthday, for his influential contribution to the field of electrochemistry and for his dedication to his colleagues and students.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, H.K., Atta, N.F. & Galal, A. Electrodeposited nanostructured Pt–Ru co-catalyst on graphene for the electrocatalytic oxidation of formaldehyde. J Solid State Electrochem 17, 1717–1727 (2013). https://doi.org/10.1007/s10008-013-2008-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2008-4

Keywords

Navigation