Skip to main content
Log in

Magnetic properties of electrochemically prepared crystalline films of Prussian blue-based molecular magnets K j CrII k [CrIII(CN)6] l  · mH2O

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Crystalline films (thickness ∼1 μm) of Prussian blue-based molecular magnets, synthesized using electrochemical method at two different reduction potentials −0.5 and −0.9 V, result into K0.1CrII 1.45[CrIII(CN)6] · mH2O (film 1) and K0.8CrII 1.1[CrIII(CN)6] · mH2O (film 2), respectively. The structural and magnetic properties of such films are investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), infrared (IR) spectroscopy, and dc magnetization measurements. The film morphology, examined using AFM, shows uniformly distributed triangular crystallites over the substrate surface. The presence of CrIII–C≡N–CrII sequence, in the range of 1,900 to 2,300 cm−1 in IR spectra, confirms formation of Prussian blue analogues. The XRD results reveal information about the crystalline nature of the films and the relative intensities of the Bragg peaks change with the K+ ions. The exchange interaction between Cr ions through C≡N ligand confirms that the electron transfer from C≡N molecule to Cr ions is ferrimagnetic in nature. The high Curie temperatures (T C) are found to be ∼195 and ∼215 K for film 1 and film 2, respectively. The higher value of T C is attributed to the inclusion of more K+ ions for film 2, resulting decreases in the CrIII(C≡N)6 vacancies and increases in the number of nearest neighbors of CrII ions. The branching in the zero field-cooled and field-cooled magnetization data below Curie temperature is explained in terms of kinetic behavior of magnetic domains with different cooling conditions and the presence of water molecule vacancies in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sato O, Lyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt–iron cyanide. Science 272:704–705

    Article  CAS  Google Scholar 

  2. Shimamoto N, Ohkoshi S, Sato O, Hashimoto K (2002) Control of charge-transfer-induced spin transition temperature on cobalt−iron Prussian blue analogues. Inorg Chem 41:678–684

    Article  CAS  Google Scholar 

  3. Coronado E, Giménez-López MC, Korzeniak T, Levchenko G, Romero FM, Segura A, García-Baonza V, Cezar JC, de Groot FMF, Milner A, Paz-Pasternak M (2008) Pressure-induced magnetic switching and linkage isomerism in K0.4Fe4[Cr(CN)6]2.8 · 16H2O: X-ray absorption and magnetic circular dichroism studies. J Am Chem Soc 130:15519–15532

    Article  CAS  Google Scholar 

  4. Tokoro H, Ohkoshi S-i (2011) Novel magnetic functionalities of Prussian blue analogs. Dalton Trans 40:6825–6833

    Article  CAS  Google Scholar 

  5. Mallah T, Thiebaut S, Verdaguer M, Veillet P (1993) High-Tc molecular-based magnets: ferrimagnetic mixed-valence chromium(lil)-chromium(ll) cyanides with Tc at 240 and 190 Kelvin. Science 262:1554–1557

    Article  CAS  Google Scholar 

  6. Ferlay S, Mallah T, Ouhes R, Veillet P, Verdaguer M (1995) A room-temperature organometallic magnet based on Prussian blue. Nature 378:701–703

    Article  CAS  Google Scholar 

  7. Sato O, Lyoda T, Fujishima A, Hashimoto K (1996) Electrochemically tunable magnetic phase transition in a high-Tc chromium cyanide thin film. Science 271:49–51

    Article  CAS  Google Scholar 

  8. Sato O, Hayami S, Einaga Y, Gu Z-Z (2003) Control of the magnetic and optical properties in molecular compounds by electrochemical, photochemical and chemical methods. Bull Chem Soc Jpn 76:443–470

    Article  CAS  Google Scholar 

  9. Buschmann WE, Paulson SC, Wynn CM, Girtu MA, Epstein AJ, White HS, Miller JS (1998) Reversed (negative) magnetization for electrochemically deposited high-Tc thin films of chromium hexacyanide magnets. Chem Mater 10(5):1386–1395

    Article  CAS  Google Scholar 

  10. Coronado E, Makarewicz M, Prieto-Ruiz JP, Prima-García H, Romero FM (2011) Magneto-optical properties of electrodeposited thin films of the molecule-based magnet Cr5.5 (CN)12 · 11.5H2O. Adv Mater 23:4323–4326

    Article  CAS  Google Scholar 

  11. Nakanishi S, Lu G, Kothari HM, Bohannan EW, Switzer JA (2003) Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110). J Am Chem Soc 125:14998–14999

    Article  CAS  Google Scholar 

  12. http://www.nanotec.es/products/wsxm/index.php.

  13. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705–013712

    Article  CAS  Google Scholar 

  14. Bleuzen A, Lomenech C, Escax V, Villain F, Varret F, Cartier dit Moulin C, Verdaguer M (2000) Photoinduced ferrimagnetic systems in prussian blue analogues CIxCo4[Fe(CN)6]y (CI = alkali cation). 1. Conditions to observe the phenomenon. J Am Chem Soc 122(28):6648–6652

    Article  CAS  Google Scholar 

  15. Bhatt P, Yusuf SM, Mukadam MD, Yakhmi JV (2010) Enhancement of Curie temperature in electrochemically prepared crystalline thin films of Prussian blue analogs K j FeII k [CrIII(CN)6] l  ⋅ mH2O. J Appl Phys 108:023916–023921

    Article  Google Scholar 

  16. Rodriguez-Carvajal J FULLPROF, November 2007, website: http://www.ill.eu/sites/fullprof/.

  17. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds. Part B: applications in coordination, organometallic and bioinorganic chemistry, 5th edn. Wiley-Interscience, New York

    Google Scholar 

  18. Kumar A, Yusuf SM, Keller L, Yakhmi JV, Srivastava JK, Paulose PL (2007) Variation of structural and magnetic properties with composition in the (CoxNi1−x)1.5[Fe(CN)6] • zH2O series. Phys Rev B 75:224419–224429

    Article  Google Scholar 

  19. Brown DB, Shriver DF, Schwartz LH (1968) Solid-state reactions of iron(II) hexacyanochromate(III). Inorg Chem 7:77–83

    Article  CAS  Google Scholar 

  20. Ohkoshi S-i, Lyoda T (1997) Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys Rev B 56:11642–11652

    Article  CAS  Google Scholar 

  21. Mukadam MD, Kumar A, Yusuf SM, Yakhmi JV, Tewari R, Dey GK (2008) Spin-glass behavior in ferromagnetic Fe[Fe(CN)6] • xH2O nanoparticles. J Appl Phys 103:123902–123907

    Article  Google Scholar 

  22. Mukadam MD, Yusuf SM, Sharma P, Kulshreshtha SK, Dey GK (2005) Dynamics of spin clusters in amorphous Fe2O3. Phys Rev B 72:174408–174414

    Article  Google Scholar 

  23. Kosaka W, Tozawa M, Hashimoto K, Ohkoshi S-i (2006) Synthesis and superparamagnetic property of a Co–Cr Prussian blue analogue nanoparticles inside Nafion membrane. Inorg Chem Commun 9:920–922

    Article  CAS  Google Scholar 

  24. Catala L, Gloter A, Stephan O, Rogez G, Mallah T (2006) Superparamagnetic bimetallic cyanide-bridged coordination nanoparticles with TB = 9 K. Chem Commun (9) 1018-1020

  25. Kumar A, Yusuf SM, Keller L (2005) Structural and magnetic properties of FeFeCN6 · 4H2O. Phys Rev B 71:054414–054420

    Article  Google Scholar 

Download references

Acknowledgment

Authors would like to thank Mr. P. Jha for the IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Bhatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, P., Yusuf, S.M., Bhatt, R. et al. Magnetic properties of electrochemically prepared crystalline films of Prussian blue-based molecular magnets K j CrII k [CrIII(CN)6] l  · mH2O. J Solid State Electrochem 17, 1285–1293 (2013). https://doi.org/10.1007/s10008-012-1995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1995-x

Keywords

Navigation