Skip to main content

Advertisement

Log in

MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Supercapacitive properties of synthesised metal oxides nanoparticles (MO where M = Ni, Co, Fe) integrated with multi-wall carbon nanotubes (MWCNT) on basal plane pyrolytic graphite electrode (BPPGE) were investigated. Successful modification of the electrode with the MWCNT-MO nanocomposite was confirmed with spectroscopic and microscopic techniques. Supercapacitive properties of the modified electrodes in sulphuric acid (H2SO4) and sodium sulphate (Na2SO4) electrolytes were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic constant current charge–discharge (CD) techniques. The specific capacitance values followed similar trend with that of the cyclic voltammetry and the electrochemical impedance experiments and are slightly lower than values obtained using the galvanostatic charge–discharge cycling. MWCNT-NiO-based electrode gave best specific capacitance of 433.8 mF cm−2 (ca 2,119 F g−1) in H2SO4. The electrode exhibited high electrochemical reproducibility with no significant changes over 1,000 cyclic voltammetry cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adekunle AS, Ozoemena KI (2008) Electrochim Acta 53:5774–5782

    Article  CAS  Google Scholar 

  2. Adekunle AS, Ozoemena KI (2008) J Solid State Electrochem 12:1325–1336

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical super capacitors. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  4. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  5. Lee YH, An KH, Lee JY, Lim SC (2004) Encycl Nanosci Nanotechnol 1:625–634

    CAS  Google Scholar 

  6. Frackowiak E, Beguin F (2002) Carbon 40:1775–1787

    Article  CAS  Google Scholar 

  7. Du C, Yeh J, Pan N (2005) Nanotechnology 16:350–353

    Article  CAS  Google Scholar 

  8. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387–392

    Article  CAS  Google Scholar 

  9. Portet C, Taberna PL, Simon P, Flahaut E (2005) J Power Sources 139:371–378

    Article  CAS  Google Scholar 

  10. Beguin F, Szostak K, Lota G, Frackowiak E (2005) Adv Mater 17:2380–2384

    Article  CAS  Google Scholar 

  11. Fan Z, Chen J, Cui K, Sun F, Xu Y, Luang Y (2007) Electrochim Acta 52:2959–2965

    Article  CAS  Google Scholar 

  12. Shinomiya T, Gupta V, Miura N (2006) Electrochim Acta 51:4412–4419

    Article  CAS  Google Scholar 

  13. Zhang GQ, Zhang ST (2009) J Appl Electrochem 39:1033–1038

    Article  CAS  Google Scholar 

  14. Wang J, Qin H, You J, Li Z, Yang P, Jing X, Zhang M, Jiang Z (2009) J Appl Electrochem 39:1803–1808

    Article  CAS  Google Scholar 

  15. Cao L, Lu M, Li HL (2005) J Electrochem Soc 152:A871–A875

    Article  CAS  Google Scholar 

  16. Wang SY HOKC, Kuo SL, Wu NL (2006) J Electrochem Soc 153:A75–A80

    Article  Google Scholar 

  17. Hu C-H, Chang K-H, Lin M-C, Wu Y-T (2006) Nano Lett 16:2690–2695

    Article  Google Scholar 

  18. Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS (2005) Small 1:560–565

    Article  CAS  Google Scholar 

  19. Liu JA, Rinzler G, Dai H, Hanfer JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Macias FR, Shon YS, Lee TR, Colbert DT (1998) Science 280:1253–1256

    Article  CAS  Google Scholar 

  20. Xiang L, Deng XY, Jin Y (2002) Scr Mater 47:219–224

    Article  CAS  Google Scholar 

  21. Yao WL, Wang JL, Yang J, Du G-D (2008) J Power Sources 176:369–372

    Article  CAS  Google Scholar 

  22. Sun YK, Ma M, Zhang Y, Gu N (2004) Colloids Surf A Physicochem Eng Asp 245:15–19

    Article  CAS  Google Scholar 

  23. Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) J Colloid Interface Sci 215:190–192

    Article  CAS  Google Scholar 

  24. Wu SH, Chen DH (2003) J Colloid Interface Sci 259:282–286

    Article  CAS  Google Scholar 

  25. Salavati-Niasari M, Fereshteh Z, Davar F (2009) Polyhedron 28:1065–1068

    Article  CAS  Google Scholar 

  26. Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 111:7727–7734

    Article  CAS  Google Scholar 

  27. Du C, Pan N (2006) J Power Sources 160:1487–1494

    Article  CAS  Google Scholar 

  28. Huang CW, Wu YT, Hu CC, Li YY (2007) J Power Sources 172:460–467

    Article  CAS  Google Scholar 

  29. Miller JR (1995) Proceedings of the Electrochemical Society Meeting, Chicago, October

  30. Girija TC, Sangaranarayanan MV (2006) J Power Sources 159:1519–1526

    Article  CAS  Google Scholar 

  31. Leroux F, Raymundo-Pinero E, Nedelec J-M, Beguin F (2006) J Mater Chem 16:2074–2081

    Article  CAS  Google Scholar 

  32. Stimpfling T, Leroux F (2010) Chem Mater 22:974–987

    Article  CAS  Google Scholar 

  33. Agboola BO, Ozoemena KI (2010) J Power Sources 195:3841–3848

    Article  CAS  Google Scholar 

  34. Chidembo AT, Ozoemena KI, Agboola BO, Gupta V, Wildgoose GG, Compton RG (2010) Energy Environ Sci 3:228–236

    Article  CAS  Google Scholar 

  35. Gao CZ, Yuan LH, Chen SL, Zhang XG (2009) J Solid State Electrochem 13:1251–1257

    Article  CAS  Google Scholar 

  36. Zhang Y, Gui Y, Wu X, Feng H, Zhang A, Wang L, Xia T (2009) Int J Hydrog Energy 34:2467–2470

    Article  CAS  Google Scholar 

  37. Huang C-M, Hu CH, Chang KH, Li JM, Li YF (2009) J Electrochem Soc 156:A667–A671

    Article  CAS  Google Scholar 

  38. Prasad KR, Miura N (2004) Electrochem Commun 6:1004–1008

    Article  Google Scholar 

Download references

Acknowledgments

We thank the University of Pretoria and the National Research Foundation (NRF, GUN # 2073666). A.S.A thanks Obafemi Awolowo University, Nigeria for the study leave. We thank Chris and Andrew of the microscopic laboratory for the TEM and SEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abolanle S. Adekunle, Kenneth I. Ozoemena or Bolade O. Agboola.

Additional information

Manuscript submitted to Journal of Solid State Electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adekunle, A.S., Ozoemena, K.I. & Agboola, B.O. MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media. J Solid State Electrochem 17, 1311–1320 (2013). https://doi.org/10.1007/s10008-012-1978-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1978-y

Keywords

Navigation