Skip to main content

Advertisement

Log in

Quantum design of ionic liquids for extreme chemical inertness and a new theory of the glass transition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In many modern technologies (such as batteries and supercapacitors), there is a strong need for redox-stable ionic liquids. Experimentally, the stability of ionic liquids can be quantified by the voltage range over which electron tunneling does not occur, but so far, quantum theory has not been applied systematically to this problem. Here, we report the electrochemical reduction of a series of quaternary ammonium cations in the presence of bis(trifluoromethylsulfonyl)imide (TFSI) anions and use nonadiabatic electron transfer theory to explicate the results. We find that increasing the chain length of the alkyl groups confers improved chemical inertness at all accessible temperatures. Simultaneously, decreasing the symmetry of the quaternary ammonium cations lowers the melting points of the corresponding ionic liquids, in two cases yielding highly inert solvents at room temperature. These are called hexyltriethylammonium TFSI (HTE-TFSI) and butyltrimethylammonium TFSI (BTM-TFSI). Indeed, the latter are two of the most redox-stable solvents in the history of electrochemistry. To gain insight into their properties, very high precision electrical conductivity measurements have been carried out in the range +20 °C to +190 °C. In both cases, the data conform to the Vogel-Tammann-Fulcher (VTF) equation with “six nines” precision (R 2 > 0.999999). The critical temperature for the onset of conductivity coincides with the glass transition temperature T g. This is compelling evidence that ionic liquids are, in fact, softened glasses. Finally, by focusing on the previously unsuspected connection between the molecular degrees of freedom of ionic liquids and their bulk conductivities, we are able to propose a new theory of the glass transition. This should have utility far beyond ionic liquids, in areas as diverse as glassy metals and polymer science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gabriel S, Weiner J (1888) Ueber einige Abkömmlinge des Propylamins. Ber Dtsch Chem Ges 21(2):2669–2679

    Article  Google Scholar 

  2. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  3. Maase M, Massonne K (2005) Biphasic acid scavenging utilizing ionic liquids: the first commercial process with ionic liquids. In: Rogers RD, Seddon KR (eds) Ionic liquids IIIB: fundamentals, progress, challenges, and opportunities. Transformations and processes. Pub: American Chemical Society, Chapter 10, pp 126–132

  4. Mohammad A, Inamuddin (eds) (2012) Green solvents II. Properties and applications of ionic liquids. Springer, Dordrecht

    Google Scholar 

  5. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407

  6. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363

    Article  CAS  Google Scholar 

  7. Endres F (2010) Physical chemistry of ionic liquids. Phys Chem Chem Phys 12:1648–1648

    Article  CAS  Google Scholar 

  8. Katayama Y (2011) General techniques. In: Ohno H (ed) Electrochemical aspects of ionic liquids, 2nd edn. Wiley, Hoboken, pp 33–42

    Chapter  Google Scholar 

  9. Appetecchi GB, Montanino M, Carewska M, Moreno M, Alessandrini F, Passerini S (2011) Chemical–physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids. Electrochim Acta 56:1300–1307

    Article  CAS  Google Scholar 

  10. Vogel H (1921) Das Temperatur-abhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys Z 22:645–646

    CAS  Google Scholar 

  11. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  12. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  CAS  Google Scholar 

  13. Atkin R, Warr GG (2007) Structure in confined room-temperature ionic liquids. J Phys Chem C 111(13):5162–5168

    Article  CAS  Google Scholar 

  14. Mezger M, Schröder H, Reichert H, Schramm S, Okasinski JS, Schöder S, Honkimäki V, Deutsch M, Ocko BM, Ralston J, Rohwerder M, Stratmann M, Dosch H (2008) Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science 322:424–428

    Article  CAS  Google Scholar 

  15. Waldmann T, Huang H-H, Hoster HE, Höfft O, Endres F, Behm RJ (2011) Imaging an ionic liquid adlayer by scanning tunneling microscopy at the solid|vacuum interface. ChemPhysChem 12:2565–2567

    Article  CAS  Google Scholar 

  16. Atkin R, Borisenko N, Drüschler M, El Abedin SZ, Endres F, Hayes R, Huber B, Roling B (2011) An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. Phys Chem Chem Phys 13:6849–6857

    Article  CAS  Google Scholar 

  17. Roling B, Drüschler M, Huber B (2012) Slow and fast capacitive process taking place at the ionic liquid/electrode interface. Faraday Discuss 154:303–311

    Article  CAS  Google Scholar 

  18. Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E 75 Article 021502

    Google Scholar 

  19. Fedorov MV, Kornyshev AA (2008) Ionic liquid near a charged wall: structure and capacitance of electrical double layer. J Phys Chem B 112:11868–11872

    Article  CAS  Google Scholar 

  20. Paek E, Pak AJ, Hwang GS (2013) A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid. J Electrochem Soc 160(1):A1–A10. doi:10.1149/2.019301jes

    Article  CAS  Google Scholar 

  21. Chemfiles enabling technologies: ionic liquids (2005) Pub by Sigma-Aldrich Co 5 (6) page 2

  22. Gordon CM, Holbrey JD, Kennedy AR, Seddon KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–2636

    Article  CAS  Google Scholar 

  23. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2140. doi:10.1039/A902818H

  24. Binnemans K (2005) Ionic liquid crystals. Chem Rev 105:4148–4204

    Article  CAS  Google Scholar 

  25. Mushrush GW, Hazlett RN (1984) Pyrolysis of organic compounds containing long unbranched alkyl groups. Ind Eng Chem Fundam 23:288–294

    Article  CAS  Google Scholar 

  26. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  27. Snook GA, Best AS, Pandolfo AG, Hollenkamp AF (2006) Evaluation of a Ag|Ag+ reference electrode for use in room temperature ionic liquids. Electrochem Commun 8(9):1405–1411

    Article  CAS  Google Scholar 

  28. Tokuda H, Tsuzuki S, Hasan MAB, Hayamizu SK, Watanabe MJ (2006) How ionic are room-temperature ionic liquids? an indicator of the physicochemical properties. J Phys Chem B 110:19593–19600

    Article  CAS  Google Scholar 

  29. Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:8858–8864

    Article  CAS  Google Scholar 

  30. Buzzeo MC, Hardacre C, Compton RG (2006) Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. Chem Phys Chem 7:176–180

    Google Scholar 

  31. Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11:1996–1999

    Article  CAS  Google Scholar 

  32. Stewart JJP (1989) Optimization of parameters for semi-empirical methods. I. Method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  33. Fletcher S (2010) The theory of electron transfer. J Solid State Electrochem 14:705–739

    Article  CAS  Google Scholar 

  34. Levich VG, Dogonadze RR (1959) Theory of non-radiative electronic transitions between ions in solution. Doklady Akad Nauk SSSR Ser Fiz Khim 124:123–126, In Russian

    CAS  Google Scholar 

  35. Slater JC (1930) Atomic shielding constants. Phys Rev 36:57–64

    Article  CAS  Google Scholar 

  36. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron-transfer. Nature 355:796–802

    Article  CAS  Google Scholar 

  37. Moser CC, Page CC, Farid R, Dutton PL (1995) Biological electron transfer. J Bioenerg Biomembr 27:263–274

    Article  CAS  Google Scholar 

  38. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  39. Holbrey JD, Rogers RD (2008) Physicochemical properties of ionic liquids: melting points and phase diagrams. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis, vol 1 Ch 3.1. Wiley, Weinheim, pp 57–71

    Google Scholar 

  40. Vila J, Ginés JP, Pico JM, Franjo C, Jiménez E, Varela LM, Cabeza O (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel-Tammann-Fulcher behavior. Fluid Phase Equilib 242:141–146

    Article  CAS  Google Scholar 

  41. Cohen MH, Turnbull D (1964) Metastability of amorphous structures. Nature 203:964

    Article  Google Scholar 

  42. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    Article  CAS  Google Scholar 

  43. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  44. Angell CA, in Rubí J-M, Pérez-Vicente C (eds) (1997) Lecture notes in physics, vol. 492, complex behaviour of glassy systems. Springer, Berlin

  45. Greet RJ, Turnbull D (1967) Glass transition in o-terphenyl. J Chem Phys 46:1243–1251

    Article  CAS  Google Scholar 

  46. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 6825:259–267

    Article  Google Scholar 

  47. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769

    Article  CAS  Google Scholar 

  48. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M, Passerini S (2006) High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  Google Scholar 

  49. Izmailova MY, Rychagov AY, Den'shchikov KK, Vol'fkovich YM, Lozinskaya EI, Shaplov AS (2009) Electrochemical supercapacitor with electrolyte based on an ionic liquid. Russ J Electrochem 45:949–950

    Article  CAS  Google Scholar 

  50. Frackowiak E (2006) Supercapacitors based on carbon materials and ionic liquids. J Braz Chem Soc 17:1074–1082

    Article  CAS  Google Scholar 

  51. Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1:3459–3464

    Article  CAS  Google Scholar 

  52. Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture—development and progress. Chem Eng Process 49:313–322

    Article  CAS  Google Scholar 

  53. Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuel 24:5817–5828

    Article  CAS  Google Scholar 

  54. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y (2012) Carbon capture with ionic liquids: overview and progress. Energy Environ Sci 5:6668–6681

    Article  CAS  Google Scholar 

  55. Kowsari E (2011) Advanced applications of ionic liquids in polymer science. In: Kokorin A (ed) Ionic liquids: applications and perspectives. Pub InTech, Rijeka, Croatia, Chapter 1, pp3–27

  56. Mudring A-V, Alammar T, Bäcker T, Richter K (2009) Nanoparticle synthesis in ionic liquids. In: Plechkova NV, Rogers RD, Seddon KR (eds) Ionic liquids: from knowledge to application. ACS Symposium Series, vol 1030. Pub. by American Chemical Society, Chapter 12, pp 177–188

  57. Nan A, Liebscher J (2011) Ionic liquids as advantageous solvents for preparation of nanostructures. In: Handy S (ed) Applications of ionic liquids in science and technology. Pub InTech, Rijeka, Croatia, Chapter 14, pp 287–301

  58. Tsuda T, Imanishi A, Torimoto T, Kuwabata S (2011) Nanoparticle preparation in room-temperature ionic liquid under vacuum condition. In: Kokorin A (ed) Ionic liquids: theory, properties, new approaches. Pub InTech, Rijeka, Croatia, Chapter 23, pp 549–564

  59. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  60. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  Google Scholar 

  61. Gibril ME (2012) Current status of applications of ionic liquids for cellulose dissolution and modifications: review. Int J Eng Sci Technol 4:3556–3571

    Google Scholar 

  62. Liu Y, Chen J, Li D (2012) Application and perspective of ionic liquids on rare earths green separation. Sep Sci Technol 47:223–232

    Article  CAS  Google Scholar 

  63. Glukhov LM, Greish AA, Kustov LM (2009) Electrodeposition of rare earth metals Y, Gd, Yb in ionic liquids. Russ J Phys Chem A 84:104–108

    Google Scholar 

  64. Eßer J, Wasserscheid P, Jess A (2004) Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem 6:316–322

    Article  Google Scholar 

  65. Zhang S, Zhang ZC (2002) Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chem 4:376–379

    Article  CAS  Google Scholar 

  66. Luo H, Dai S, Bonnesen PV, Buchanan AC (2006) Separation of fission products based on room-temperature ionic liquids. Nuclear Waste Management: accomplishments of the Environmental Management Science Program. ACS symposium series volume 943. Wang PW, Zachry T (eds) Chapter 8, pp 146–160

  67. Valkenburg MEV, Vaughn RL, Williams M, Wilkes JS (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188

    Article  Google Scholar 

  68. Liu H, Maginn E, Visser AE, Bridges NJ, Fox EB (2012) Thermal and transport properties of six ionic liquids: an experimental and molecular dynamics study. Ind Eng Chem Res 51:7242–7254

    Article  CAS  Google Scholar 

  69. Palacio M, Bhushan B (2010) A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol Lett 40(2):247–268

    Article  CAS  Google Scholar 

  70. Bermúdez M-D, Jiménez A-E, Sanes J, Carrión F-J (2009) Ionic liquids as advanced lubricant fluids. Molecules 14:2888–2908

    Article  Google Scholar 

  71. Doerr N, Gebeshuber IC, Holzer D, Wanzenboeck HD, Ecker A, Pauschitz A, Franek F (2010) Evaluation of ionic liquids as lubricants. J Microengin Nanoelec 1:29–34

    Google Scholar 

  72. Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38:2590–2599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Pik Leung Tang is thanked for assistance with DSC measurements. This work was financially supported by Schlumberger WCP Ltd (UK) and EPSRC (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Fletcher.

Additional information

Dedication

This study is dedicated to Professor Alexander Milchev on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, S., Black, V.J., Kirkpatrick, I. et al. Quantum design of ionic liquids for extreme chemical inertness and a new theory of the glass transition. J Solid State Electrochem 17, 327–337 (2013). https://doi.org/10.1007/s10008-012-1974-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1974-2

Keywords

Navigation