Skip to main content
Log in

Synthesis of dispersed metal particles for applications in photovoltaics, catalysis, and electronics

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In colloid and nanoparticle chemistry, particle size, shape, crystallinity, surface morphology, and composition are controlled by employing the mechanisms of burst nucleation, diffusional growth, aggregation, or their combinations. Here we review and survey practical examples of recently developed methods for preparing metal colloids and nanoparticles for industrial applications such as photovoltaics, catalysis, and consumer electronics. We discuss relevant theoretical models, many of which are general, and identify growth mechanisms that play a major role in other systems and applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hartl K, Mayrhofer K, Lopez M, Goia D, Arenz M (2010) Electrochem Commun 12:1487–1489

    Article  CAS  Google Scholar 

  2. Kinnunen NM, Suvanto M, Moreno MA, Savimaki A, Kallinen K, Kinnunen T-JJ, Pakkanen TA (2009) Appl Catal A 370:78–87

    Article  CAS  Google Scholar 

  3. Mbang T, Ketcha J, Geron C (2005) Ann Chim Sci Mat 30:149–170

    Article  CAS  Google Scholar 

  4. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) J Phys Chem B 109:22701–22704

    Article  CAS  Google Scholar 

  5. Kokkinidis G, Stoychev D, Lazarov V, Papoutsis A, Milchev A (2001) J Electroanal Chem 511:20–30

    Article  CAS  Google Scholar 

  6. Balantrapu K, Goia DV (2009) J Mater Res 24:2828–2836

    Article  CAS  Google Scholar 

  7. Jitianu A, Kim MS, Andreescu D, Goia DV (2009) J Nanosci Nanotechnol 9:1891–1896

    Article  CAS  Google Scholar 

  8. Toschev S, Milchev A, Popova K, Markov I (1969) Compt Rend Acad Bulg Sci 22:1413–1416

    Google Scholar 

  9. Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105, 8 pages

    Article  CAS  Google Scholar 

  10. Morrow BJ, Matijevic E, Goia DV (2009) J Colloid Interface Sci 335:62–69

    Article  CAS  Google Scholar 

  11. Andreescu D, Sau TK, Goia DV (2006) J Colloid Interface Sci 298:742–751

    Article  CAS  Google Scholar 

  12. Matijevic E (2011) Fine particles in medicine and pharmacy. Springer, New York

    Google Scholar 

  13. Kwon JH, An JY, Jang H, Choi S, Chung DS, Lee MJ, Cha HJ, Park JH, Park CE, Kim YH (2011) J Polym Sci Part A: Polym Chem 49:1119–1128

    Article  CAS  Google Scholar 

  14. Nam HJ, Jung DY, Park YK, Park S (2010) Appl Surf Sci 256:2066–2072

    Article  CAS  Google Scholar 

  15. Sabat RG, Santos MJL, Rochon P (2010) Int J Photoenergy, 2010:698718, 5 pages

  16. Goia DV (2004) J Mater Chem 14:451–458

    Article  CAS  Google Scholar 

  17. Suganuma K, Wakuda D, Hatamura M, Kim KS (2007) In: HDP Proc, pages 1–4, Shanghai

  18. Zarbov M, Brandon D, Gal-Or L, Cohen N (2006) In: Boccaccini A, VanderBiest O, Clasen R (ed) Electrophoretic deposition: fundamentals and applications. 314:95–100

  19. Koga K, Matsunaga T, Nakamura WM, Nakahara K, Kawashima Y, Uchida G, Kamataki K, Itagaki N, Shiratani M (2011) Thin Solid Films 519:6896–6898

    Article  CAS  Google Scholar 

  20. Park JH, Song J, Lee JH, Lee JC (2012) J Kor Phys Soc 60:2054–2057

    Article  CAS  Google Scholar 

  21. Temple TL, Bagnall DM (2011) J Appl Phys 109:084343, 13 pages

    Article  CAS  Google Scholar 

  22. Goia DV, Lopez M, Sevonkaev I (2012) Method of manufacture of size-controlled metal particles by seeding method. Patent US 2012 / 0238443 A1

  23. Halaciuga I, LaPlante S, Goia DV (2009) J Mater Res 24:3237–3240

    Article  CAS  Google Scholar 

  24. Farrell BP (2010) Investigation of shape anisotropy in precipitated silver and silver/palladium particles. Ph.D. thesis, Clarkson University, Potsdam

  25. Halaciuga I, Goia DV (2008) J Mater Res 23(06):1776–1784

    Article  CAS  Google Scholar 

  26. Goia D, Matijevic E (1999) Colloids Surf A 146:139–152

    Article  CAS  Google Scholar 

  27. Grass RN, Albrecht TF, Krumeich F, Stark WJ (2007) J Mater Chem 17:1485–1490

    Article  CAS  Google Scholar 

  28. Hunt E, Pantoya M (2005) J Appl Phys 98:034909, 8 pages

    Article  CAS  Google Scholar 

  29. Ionkin AS, Fish BM, Li ZR, Lewittes M, Soper PD, Pepin JG, Carroll AF (2011) ACS Appl Mater Interfaces 3:606–611

    Article  CAS  Google Scholar 

  30. Shi Y, Liu J, Yan Y, Xia Z, Lei Y, Guo F, Li X (2008) J Electron Mater 37:507–514

    Article  CAS  Google Scholar 

  31. Vasylkiv O, Sakka Y, Skorokhod VV (2006) J Nanosci Nanotechnol 6:1625–1631

    Article  CAS  Google Scholar 

  32. Fu W, Yang H, Chang L, Li M, Bala H, Yu Q, Zou G (2005) Colloids Surf A 262:71–75

    Article  CAS  Google Scholar 

  33. Roy R, Njagi J, Farrell B, Halaciuga I, Lopez M, Goia D (2012) J Colloid Interface Sci 369:91–95

    Article  CAS  Google Scholar 

  34. Halaciuga I, Njagi JI, Redford K, Goia DV (2012) J Colloid Interface Sci 383:215–221

    Article  CAS  Google Scholar 

  35. Farrell BP, Andreescu D, Eastman CM, Goia D (2005) CARTS Proc Palm Springs, California, March 21–24. ECIA, Alpharetta

    Google Scholar 

  36. Mehta M, Burn I, Basak S, Goia D, Soni H, Spang D (1999) CARTS Proc New Orleans, Louisiana, March 15–19. ECIA, Alpharetta

    Google Scholar 

  37. Schuldiner S, Rosen M, Flinn DR (1970) J Electrochem Soc 117:1251–1259

    Article  CAS  Google Scholar 

  38. Kim S, Kim SK, Park S (2009) J Am Chem Soc 131:8380–8381

    Article  CAS  Google Scholar 

  39. Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Phys Rev Lett 88:0774024, 4 pages

    Google Scholar 

  40. Yu S, Colfen H, Mastai Y (2004) J Nanosci Nanotechnol 4:291–298

    Article  CAS  Google Scholar 

  41. Farrell BP, Lu L, Goia DV (2012) J Colloid Interface Sci 376:62–66

    Article  CAS  Google Scholar 

  42. Sevonkaev I, Privman V (2009) World J Eng 6:909, 2 pages

    Google Scholar 

  43. Sevonkaev I, Goia DV, Matijevic E (2008) J Colloid Interface Sci 317(1):130–136

    Article  CAS  Google Scholar 

  44. Sevonkaev I (2009) Size and shape of uniform particles precipitated in homogeneous solutions. Ph.D. thesis, Clarkson University, Potsdam

  45. Milchev A (2008) Russ J Electrochem 44:619–645

    Article  CAS  Google Scholar 

  46. Milchev A, Kruijt W, Sluyters-Rehbach M, Sluyters J (1993) J Electroanal Chem 362:21–31

    Article  CAS  Google Scholar 

  47. Gorshkov V, Privman V (2010) Physica E 43:1–12

    Article  CAS  Google Scholar 

  48. Gorshkov V, Zavalov A, Privman V (2009) Langmuir 25:7940–7953

    Article  CAS  Google Scholar 

  49. Gorshkov V, Zavalov O, Atanassov PB, Privman V (2011) Langmuir 27:8554–8561

    Article  CAS  Google Scholar 

  50. Halaciuga I, Robb D, Privman V, Goia D (2009) In: Avis D, Kollmitzer C, Privman V (ed) Proc Conf ICQNM 2009, IEEE Comp Soc Conf Publ Serv, Los Alamitos, California, pages 141–146

  51. Libert S, Gorshkov V, Goia D, Matijevic E, Privman V (2003) Langmuir 19:10679–10683

    Article  CAS  Google Scholar 

  52. Libert S, Gorshkov V, Privman V, Goia D, Matijevic E (2003) Adv Colloid Interface Sci 100:169–183

    Article  CAS  Google Scholar 

  53. Mozyrsky D, Privman V (1999) J Chem Phys 110:9254–9258

    Article  CAS  Google Scholar 

  54. Park J, Privman V (2000) Recent Res Dev Stat Phys 1:1–17

    CAS  Google Scholar 

  55. Park J, Privman V, Matijevic E (2001) J Phys Chem B 105:11630–11635

    Article  CAS  Google Scholar 

  56. Privman V (2002) Mater Res Soc Symp Proc 703:577–585

    CAS  Google Scholar 

  57. Privman V (2008) J Optoelectron Adv Mater 10:2827–2839

    CAS  Google Scholar 

  58. Privman V (2009) Ann NY Acad Sci 1161:508–525

    Article  CAS  Google Scholar 

  59. Privman V, Park J (2001) Mat Processing Proc 1:141–147

    Google Scholar 

  60. Privman V, Goia D, Park J, Matijevic E (1999) J Colloid Interface Sci 213:36–45

    Article  CAS  Google Scholar 

  61. Privman V, Gorshkov V, Zavalov O (2011) In: Sadhal SS (ed) Proc Conf ITP 2011, University of Southern California Press, Los Angeles, article 11, pages 4-2–4-12

  62. Robb D, Privman V (2008) Langmuir 24:26–35

    Article  CAS  Google Scholar 

  63. Robb DT, Halaciuga I, Privman V, Goia DV (2008) J Chem Phys 129:184705, 11 pages

    Article  CAS  Google Scholar 

  64. Matijevic E (1993) Chem Mater 5:412–426

    Article  CAS  Google Scholar 

  65. Matijevic E, Goia D (2007) Croat Chem Acta 80:485–491

    CAS  Google Scholar 

  66. Leon-Velazquez M, Irizarry R, Castro-Rosario M (2010) J Phys Chem C 114(13):5839–5849

    Article  CAS  Google Scholar 

  67. Eastoe J, Hollamby MJ, Hudson L (2006) Adv Colloid Interface Sci 128–130:5–15

    Article  CAS  Google Scholar 

  68. Fendler JH, Tian Y (2007) In: Fendler JH (ed) Nanoparticles and nanostructured films: preparation, characterization and applications. Wiley, Weinheim, pp 429–461, chapter 18

    Google Scholar 

  69. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  70. Schmid G (1992) Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  71. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) J Phys Chem B 103:3818–3827

    Article  CAS  Google Scholar 

  72. LaMer VK (1952) Ind Eng Chem 44:1270–1277

    Article  CAS  Google Scholar 

  73. LaMer VK, Dinegar RH (1950) J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  74. Chernov S, Fedorov Y, Zakharov V (1993) J Phys Chem Solids 54:963–966

    Article  CAS  Google Scholar 

  75. Nanev CN, Hodzhaoglu FV, Dimitrov IL (2011) Cryst Growth Des 11:196–202

    Article  CAS  Google Scholar 

  76. Irizarry R (2010) Ind Eng Chem Res 49:5588–5602

    Article  CAS  Google Scholar 

  77. Irizarry R, Burwell L, Leon-Velazquez MS (2011) Ind Eng Chem Res 50:8023–8033

    Article  CAS  Google Scholar 

  78. Voorhees P (1985) J Stat Phys 38:231–252

    Article  Google Scholar 

  79. Family F, Vicsek T (1991) Dynamics of fractal surfaces. World Scientific, Singapore

    Google Scholar 

  80. Godreche C (1992) Solids far from equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  81. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  82. Lewis LJ, Jensen P, Barrat JL (1997) Phys Rev B: Condens Matter 56:2248–2257

    Article  CAS  Google Scholar 

  83. Kelton KF, Greer AL (1988) Phys Rev B: Condens Matter 38:10089–10092

    Article  Google Scholar 

  84. Shore JD, Perchak D, Shnidman Y (2000) J Chem Phys 113:6276–6284

    Article  CAS  Google Scholar 

  85. Kelton KF, Greer AL, Thompson CV (1983) J Chem Phys 79:6261–6276

    Article  CAS  Google Scholar 

  86. Ludwig FP, Schmelzer J (1996) J Colloid Interface Sci 181:503–510

    Article  CAS  Google Scholar 

  87. Jadzyn J, Czechowski G, Stefaniak T (2002) J Chem Eng Data 47:978–979

    Article  CAS  Google Scholar 

  88. Bailey JK, Brinker C, Mecartney ML (1993) J Colloid Interface Sci 157:1–13

    Article  CAS  Google Scholar 

  89. Bromberg L, Rashba-Step J, Scott T (2005) Biophys J 89:3424–3433

    Article  CAS  Google Scholar 

  90. Crnjak OZ, Matijevic E, Goia DV (2003) Colloid Polym Sci 281:754–759

    Article  CAS  Google Scholar 

  91. Edelson LH, Glaeser AM (1988) J Am Ceram Soc 71:225–235

    Article  CAS  Google Scholar 

  92. Goia C, Matijevic E (1998) J Colloid Interface Sci 206:583–591

    Article  CAS  Google Scholar 

  93. Haruta M, Delmon B (1986) J Chim Phys 83:859–868

    CAS  Google Scholar 

  94. Hsu WP, Ronnquist L, Matijevic E (1988) Langmuir 4:31–37

    Article  CAS  Google Scholar 

  95. Jitianu M, Goia DV (2007) J Colloid Interface Sci 309:78–85

    Article  CAS  Google Scholar 

  96. Lee SH, Her YS, Matijevic E (1997) J Colloid Interface Sci 186:193–202

    Article  CAS  Google Scholar 

  97. Matijevic E (1985) Ann Rev Mater Sci 15:483–516

    Article  CAS  Google Scholar 

  98. Matijevic E (1994) Langmuir 10:8–16

    Article  CAS  Google Scholar 

  99. Matijevic E, Murphy-Wilhelmy D (1982) J Colloid Interface Sci 86:476–484

    Article  CAS  Google Scholar 

  100. Matijevic E, Scheiner P (1978) J Colloid Interface Sci 63:509–524

    Article  CAS  Google Scholar 

  101. Morales M, Gonzalez-Carreno T, Serna C (1992) J Mater Res 7:2538–2545

    Article  CAS  Google Scholar 

  102. Murphy-Wilhelmy D, Matijevic E (1984) J Chem Soc Faraday Trans 80:563–570

    Article  Google Scholar 

  103. Ocana M, Matijevic E (1990) J Mater Res 5:1083–1091

    Article  CAS  Google Scholar 

  104. Ocana M, Morales MP, Serna CJ (1995) J Colloid Interface Sci 171:85–91

    Article  CAS  Google Scholar 

  105. Ocana M, Serna CJ, Matijevic E (1995) Colloid Polym Sci 273:681–686

    Article  CAS  Google Scholar 

  106. Sondi I, Goia DV, Matijevic E (2003) J Colloid Interface Sci 260:75–81

    Article  CAS  Google Scholar 

  107. Sugimoto T (1987) Adv Colloid Interface Sci 28:65–108

    Article  CAS  Google Scholar 

  108. Sugimoto T (1992) J Colloid Interface Sci 150:208–225

    Article  CAS  Google Scholar 

  109. Brilliantov N, Krapivsky P (1991) J Phys A: Math Gen 24:4789–4803

    Article  Google Scholar 

  110. Dirksen JA, Benjelloun S, Ring TA (1990) Colloid Polym Sci 268:864–876

    Article  CAS  Google Scholar 

  111. van Dongen PGJ, Ernst MH (1984) J Stat Phys 37:301–324

    Article  Google Scholar 

  112. Schaefer DW, Martin JE, Wiltzius P, Cannell DS (1984) Phys Rev Lett 52:2371–2374

    Article  CAS  Google Scholar 

  113. German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, Princeton

    Google Scholar 

Download references

Acknowledgments

The authors thank P. Atanassov, V. Gorshkov, I. Halaciuga, D. Robb, and O. Zavalov for rewarding scientific interactions and collaboration and acknowledge the research support by the US ARO under grant W911NF-05-1-0339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Goia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevonkaev, I., Privman, V. & Goia, D. Synthesis of dispersed metal particles for applications in photovoltaics, catalysis, and electronics. J Solid State Electrochem 17, 279–297 (2013). https://doi.org/10.1007/s10008-012-1954-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1954-6

Keywords

Navigation