Skip to main content
Log in

Oscillatory passive active transition during the corrosion in nickel chromium layer systems

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical corrosion of the porous layer system nickel/chromium was investigated combining classical open circuit measurements, cyclic voltammetry, and zero-resistance Ammeter experiments. Under moderate conditions as there are low chloride concentration, pH 6, and high oxygen content the nickel layer acts as sacrificial anode, whereas at the chromium top layer oxygen reduction takes place. Under conditions of limited access of oxygen into pores potential oscillations occur which indicates a change of corrosion mechanism. Thereby the anode reaction changes between nickel and chromium dissolution. The respective cathode reaction is oxygen reduction or hydrogen evolution. The modeling of the potential oscillation reveals the character of the potential-dependent Flade potential as function of the proton concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cicek V, Al-Numan B (2011) Corrosion chemistry. Wiley, New York

    Book  Google Scholar 

  2. Etminanfar MR, Sohi MH (2012) Thin Solid Films 520:5322–5327

    Article  CAS  Google Scholar 

  3. http://www.micrometalfinishing.com/id1.html

  4. Bauer G, Donner C, Hartmann Ph,Wachter Ph (2010) Calciumchlorid Korrosion an dekorativ verchromten Auto Aussenteilen. Galvanotechnik 9

  5. Ostwald W (1900) Z Phys Chem 35:33

    CAS  Google Scholar 

  6. Brauer E (1901) Über das elektrische Verhalten des Chroms bei der Auflösung in Säuren. Universitat Leipzig

  7. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley-Interscience, New York

    Google Scholar 

  8. Zaikin AN, Zhabotinsky AM (1970) Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225:535

    Article  CAS  Google Scholar 

  9. Weil KG, Bonhoeffer KF (1955) Zur Passivität des Eisens in neutralen und schwach sauren Lösungen. Z PhysChem 4(3_4):175–191

    CAS  Google Scholar 

  10. Franck UF, Weil KG (1952) Z Elektrochem 56:814

    CAS  Google Scholar 

  11. Krischer K (1999) Principles of temporal and spatial pattern formation in electrochemical systems. In: Conway BE, Bockris Jo’M, White RE (eds) Modern aspects of electrochemistry, vol 32. Plenum Press, New York, pp 1–142

    Chapter  Google Scholar 

  12. Krischer K (2003) Nonlinear dynamics in electrochemical systems. In: Alkire RC, Kolb DM (eds) Advances in Electrochemical Science and Engineering. 8: 89–208, Wiley, New York

  13. Orlik M (2012) Self-organization in electrochemical systems. I. General principles of self-organization. Temporal instabilities. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin

    Google Scholar 

  14. Orlik M (2012) Self-organization in electrochemical systems. II. Spatiotemporal patterns and control of chaos. In: Scholz F (ed) Monographs in electrochemistry. Springer, Berlin

    Google Scholar 

  15. Avrami M (1941) Kinetics of phase change. III: Granulation, phase change and microstructure. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  16. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Springer, Berlin

    Google Scholar 

  17. Pohlmann L, Donner C, Baumgärtel H (1997) J Phys Chem B 101 49:10198–10204

    Article  Google Scholar 

  18. Franck UF, FitzHugh R (1961) Z Elektrochem 65:156–168

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Donner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohlmann, L., Bauer, G., Hartmann, P. et al. Oscillatory passive active transition during the corrosion in nickel chromium layer systems. J Solid State Electrochem 17, 489–496 (2013). https://doi.org/10.1007/s10008-012-1949-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1949-3

Keywords

Navigation