Skip to main content
Log in

Corrosion protective ability of electrodeposited ceria layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

It has been ascertained that the electrochemically deposited thin films of cerium oxides, containing mainly CeO2 and also some insignificant amount of Ce2O3, are acting as an effective cathodic coating, leading to restoration of the passive state of the studied stainless steel (OC 404) samples. This effect is associated with a strong shifting of the stationary corrosion potential of the steel in positive direction, moving over from potentials characteristic of corrosion in active state to potentials falling within the zone of passivity. In this respect, another basic purpose of the investigations was the elucidation of the mechanism of action of the cerium oxide film and in particular collecting experimental evidence for the supposition about the occurrence of an efficient depolarization reaction of CeO2 reduction (resulting in a state of passivity—improved ability of self-passivation) instead of hydrogen depolarization reaction. For this purpose, we considered also the decrease in the surface concentration of ceria in the passive layer under the conditions of the actual corrosion process (self-dissolution) of the stainless steel by means of XPS, SEM, ICP-AES, and gravimetric analyses. A decrease in the surface concentration of CeO2 (Ce4+) has been observed, which is known to be chemically inert in acidic media. The obtained results prove the occurrence of an effective cathodic process of Ce4+ (CeO2) reduction into Ce3+ (soluble in acids Ce2O3 ) in the superficial oxide film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schaefer H, Stock HR (2005) Corros Sci 47:953–959

    Article  CAS  Google Scholar 

  2. Hagans PL, Hass CM (1994) ASM handbook, vol 05. Surf Eng 5:405–411, ISBN: 978-087170-384-2

    Google Scholar 

  3. Bethancourt M, Botana FJ, Calvino JJ, Marcos M, Rodriguez-Chacón MA (1998) Corros Sci 40:1803–1819

    Article  Google Scholar 

  4. Crossland AC, Thompson GE, Skeldon P, Smith GC (1998) Corros Sci 40:871–885

    Article  CAS  Google Scholar 

  5. Davenport AJ, Isaacs HS, Kendig MW (1991) Corros Sci 32:653–663

    Article  CAS  Google Scholar 

  6. Fahrenholtz WG, O’Keefe MJ, Zhou H, Grant JT (2002) Surf Coat Technol 155:208–213

    Article  CAS  Google Scholar 

  7. Forsyth M, Forsyth CM, Wilson K, Behrsing T, Deacon GB (2002) Corros Sci 44:2651–2656

    Article  CAS  Google Scholar 

  8. Hinton BRW, Wilson L (1989) Corros Sci 29:967–975, 977–985

    Article  CAS  Google Scholar 

  9. Hinton BRW (1992) J Alloys Compd 180:15–25

    Article  CAS  Google Scholar 

  10. Hosseini MG, Ashassi-Sorkhabi H, Ghiasvand HAY (2007) J Rare Earths 25:537–543

    Article  Google Scholar 

  11. Liu R, Li DY (2000) J Mater Sci 35:633–641

    Article  CAS  Google Scholar 

  12. Montemor MF, Simŏes AMP, Ferreira AMP (2002) Prog Org Coat 44:111–120

    Article  CAS  Google Scholar 

  13. Montemor MF, Ferreira MGS (2008) Prog Org Coat 63:330–337

    Article  CAS  Google Scholar 

  14. Pardo A, Merino M, Arrabal CR, Merino S, Viejo F, Carboneras M (2006) Surf Coat Technol 200:2938–2947

    Article  CAS  Google Scholar 

  15. Wang KL, Zang QB, Sun ML, Zhu YM (1997) Surf Coat Technol 96:267–271

    Article  CAS  Google Scholar 

  16. Aramaki K (2001) Corros Sci 43:1201–1215

    Google Scholar 

  17. Aramaki K (2002) Corros Sci 44:1375–1389

    Article  CAS  Google Scholar 

  18. Arenas MA, Conde A, de Damborenea J (2002) Corros Sci 44:511–520

    Google Scholar 

  19. Arenas MA, de Damborenea J (2003) Electrochim Acta 48:3693–3698

    Article  CAS  Google Scholar 

  20. Ferreira MG, Duarte RJ, Montemor MF, Simões AM (2004) Electrochim Acta 49:2927–2935

    Article  CAS  Google Scholar 

  21. Virtanen S, Ives M, Sproule G, Schmuki P, Graham M (1997) Corros Sci 39:1897–1913

    Article  CAS  Google Scholar 

  22. Aldykiewiez AJ Jr, Davenport AJ, Isaacs HS (1995) J Electrochem Soc 142:3342–3350

    Article  Google Scholar 

  23. Amelinckx L, Kamrunahar M, Chou P, Macdonald D (2006) Corros Sci 48:3646–3667

    Article  CAS  Google Scholar 

  24. Arnott DR, Hinton BRW, Ryan NE (1989) Corrosion 45:12–18

    Article  CAS  Google Scholar 

  25. Mansfeld F, Wang Y (1995) Mater Sci Eng, A 198:51–61

    Article  Google Scholar 

  26. Breslin CB, Chen C, Mansfeld F (1997) Corros Sci 39:1061–1073

    Article  CAS  Google Scholar 

  27. Lu YC, Ives MB (1993) Corros Sci 34:1773–1781

    Article  CAS  Google Scholar 

  28. Lu YC, Ives MB (1995) Corros Sci 37:145–155

    Article  CAS  Google Scholar 

  29. Arenas MA, Conde, de Damborenea J (2002) Corros Sci 44:511–520

    Article  CAS  Google Scholar 

  30. Liu H, Yang J, Liang H-H, Zhuang J-H, Zhou W-F (2001) J Power Sources 93:230–233

    Article  CAS  Google Scholar 

  31. Wang C, Jiang F, Wang F (2004) Corros Sci 46:75–89

    Article  CAS  Google Scholar 

  32. Montemor MF, Simŏes AMP, Ferreira MGS (2001) Prog Org Coat 43:274–281

    Article  CAS  Google Scholar 

  33. Nikolova D, Stoyanova E, Stoychev D, Stefanov P, Marinova T (2006) Surf Coat Technol 201:1556–1567

    Article  Google Scholar 

  34. Nickolova D, Stoyanova E, Stoychev D, Stefanov P, Avramova I (2008) Surf Coat Technol 202:1876–1888

    Article  CAS  Google Scholar 

  35. Stoyanova E, Nikolova D, Stoychev D, Stefanov P, Marinova T (2006) Corros Sci 48:4037–4052

    Article  CAS  Google Scholar 

  36. Stoyanova E, Guergova D, Stoychev D, Avramova I, Stefanov P (2010) Electrochim Acta 55:1725–1732

    Article  CAS  Google Scholar 

  37. Achmetov NS (1988) General and inorganic chemistry, 2nd edn. Vyshaya Shkola, Moscow, in Russian

    Google Scholar 

  38. Guergova D, Stoyanova E, Stoychev D, Avramova I, Stefanov P (2012) Open Chem Phys J 4:8–17

    Article  CAS  Google Scholar 

  39. Daskalova N, Aleksieva L, Gentsheva G, Velichkov S (2002) Spectrochim Acta B 57:755–761

    Article  Google Scholar 

  40. Detcheva A, Daskalova N, Velichkov S, Havezov I (2003) Spectrochim Acta B 58:1481–1486

    Article  Google Scholar 

  41. Tomashov ND, Chernova GP (1965) Passivity and protection of metals from corrosion. Nauka, Moscow, in Russian

    Google Scholar 

  42. Tomashov ND, Chernova GP (1993) Theory of corrosion and corrosion-stable materials. Metallurgia, Moscow, in Russian

    Google Scholar 

  43. Guergova D, Stoyanova E, Stoychev D, Atanasova G, Avramova I, Stefanov P (2008) Bulg Chem Commun 40:227–232

    CAS  Google Scholar 

  44. Burroughs P, Hamnett A, Orchard AF, Thornton GJ (1976) J Chem Soc Dalton Trans 17:1686–1698

    Article  Google Scholar 

  45. Hoang M, Hughes AE, Turney TW (1993) Appl Surf Sci 72:55–65

    Article  CAS  Google Scholar 

  46. Paparazzo E (1990) Surf Sci 234:L253–L258

    Article  CAS  Google Scholar 

  47. Huang X, Li N, Wang H, Sun H, Sun S, Zheng J (2008) Thin Solid Films 516:1037–1043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar Stoychev.

Additional information

This article is dedicated to Professor Alexander Milchev, honorary member of the Rostislaw Kaischew Institute of Physical Chemistry—Bulgarian Acadmy of Sciences, on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoychev, D. Corrosion protective ability of electrodeposited ceria layers. J Solid State Electrochem 17, 497–509 (2013). https://doi.org/10.1007/s10008-012-1937-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1937-7

Keywords

Navigation