Journal of Solid State Electrochemistry

, Volume 17, Issue 3, pp 817–828 | Cite as

Relation between morphology and conductivity in TiO2 nanotube arrays: an electrochemical impedance spectrometric investigation

  • P. Pu
  • H. Cachet
  • E. Ngaboyamahina
  • E. M. M. Sutter
Original Paper

Abstract

Two types of TiO2 nanotubular arrays were obtained by anodisation of a titanium foil, in two different solutions containing fluoride ions. For the first type which has rough tube walls, impedance measurements in the dark showed the presence of a localised surface state which was related to adsorbed molecular water. Under UV illumination, this adsorbed molecular water was photo-dissociated. Moreover, an increase of 2 orders of magnitude for the limiting capacitance of the space charge layer was observed, simultaneously with the disappearance of the localised state and with a 100-time increase of the carrier density associated with hydrogen insertion. The second type of layer was characterised by smoother tube walls, a high doping level (1020 cm−3) in the dark, a lack of localised states and no long-lasting photo-induced effect. In this case, the width of the space charge layer became rapidly higher than the half-thickness of the tube walls, when the applied potential increased. Therefore, the walls were progressively depleted under anodic polarisation, passing from a situation where the tubes were totally active in the cathodic range towards a situation where the contribution of the tube walls could be neglected.

References

  1. 1.
    Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334CrossRefGoogle Scholar
  2. 2.
    Pu P, Cachet H, Sutter EMM (2010) Electrochim Acta 55:5938–5946CrossRefGoogle Scholar
  3. 3.
    Nishikiori H, Qian W, El-Sayed MA, Tanaka N, Fujii T (2007) J Phys Chem C 111:9008–9011CrossRefGoogle Scholar
  4. 4.
    Kondo JN, Domen K (2008) Chem Mat 20:835–847CrossRefGoogle Scholar
  5. 5.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624–627CrossRefGoogle Scholar
  6. 6.
    Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Thin Solid Films 496:42–48CrossRefGoogle Scholar
  7. 7.
    Varghese OK, Grimes CA (2003) J Nanosci Nanotechnol 3:277–293CrossRefGoogle Scholar
  8. 8.
    Balaur E, Macak JM, Tsuchiya H, Schmuki P (2005) J Mater Chem 15:4488–4491CrossRefGoogle Scholar
  9. 9.
    Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) J Non-Cryst Solids 354:2767–2771CrossRefGoogle Scholar
  10. 10.
    Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) J Am Chem Soc 130:1124–1125CrossRefGoogle Scholar
  11. 11.
    Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Nano Lett 7:1286–1289CrossRefGoogle Scholar
  12. 12.
    Zhang ZH, Yuan Y, Shi GY, Fang YJ, Liang LH, Ding HC, Jin LT (2007) Environ Sci Technol 41:6259–6263CrossRefGoogle Scholar
  13. 13.
    Atyaoui A, Bousselmi L, Cachet H, Pu P, Sutter EMM (2011) J Photochem Photobiol A 224:71–79CrossRefGoogle Scholar
  14. 14.
    Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Grimes CA (2006) J Photochem Photobiol A 177:177–184CrossRefGoogle Scholar
  15. 15.
    Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, Choi KS (2008) Chem Mater 20:5266–5273CrossRefGoogle Scholar
  16. 16.
    Mazare A, Paramasivam I, Lee K, Schmuki P (2011) Electrochem Commun 13:1030–1034CrossRefGoogle Scholar
  17. 17.
    Hoyer P (1996) Langmuir 12:1411–1413CrossRefGoogle Scholar
  18. 18.
    Shinggubara S (2003) J Nano Res 5:17–30CrossRefGoogle Scholar
  19. 19.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160–3163CrossRefGoogle Scholar
  20. 20.
    Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) J Electrochem Soc 150:G488–G493CrossRefGoogle Scholar
  21. 21.
    Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3–18CrossRefGoogle Scholar
  22. 22.
    Ruan C, Paulose M, Varghese OK, Grimes CA (2006) Sol Energy Mater Sol Cells 90:1283–1295CrossRefGoogle Scholar
  23. 23.
    Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P (2005) Electrochem Commun 7:576–580CrossRefGoogle Scholar
  24. 24.
    Taveira L, Sagüés A, Macak JM, Schmuki P (2008) J Electrochem Soc 155:C293–C302CrossRefGoogle Scholar
  25. 25.
    Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) J Am Chem Soc 130:11312–11316CrossRefGoogle Scholar
  26. 26.
    Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) J Phys Chem C 111:7235–7241CrossRefGoogle Scholar
  27. 27.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TJ, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179–16184CrossRefGoogle Scholar
  28. 28.
    Gong X, Selloni A, Batzill M, Diebold U (2006) Nat Mater 5:665–670CrossRefGoogle Scholar
  29. 29.
    Gong X, Selloni A (2007) J Catal 249:134–139CrossRefGoogle Scholar
  30. 30.
    Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Nanotechnology 17:1446–1448CrossRefGoogle Scholar
  31. 31.
    Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398–402CrossRefGoogle Scholar
  32. 32.
    Van de Krol R, Goossens A, Schoonman J (1997) J Electrochem Soc 144:1723–1727CrossRefGoogle Scholar
  33. 33.
    Hafidi K, Azizan M, Ijdiyaou Y, Ameziane EL (2004) Act Passive Electron Compon 27:169–181CrossRefGoogle Scholar
  34. 34.
    Brug GJ, Van Den Eeden ALG, Sluyters-Rehbach M, Sluyters GH (1984) J Electroanal Chem 176:275–295CrossRefGoogle Scholar
  35. 35.
    Bisquert J (2008) Phys Chem Chem Phys 10:49–72CrossRefGoogle Scholar
  36. 36.
    Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea EM, Palomares M (2008) Inorg Chim Acta 361:684–698CrossRefGoogle Scholar
  37. 37.
    Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2008) J Phys Chem B 104:538–547CrossRefGoogle Scholar
  38. 38.
    Yang J, Warren DS, Keith Gordon C, McQuillan AJ (2007) J Appl Phys 101:023714CrossRefGoogle Scholar
  39. 39.
    Savory DM, Warren DS, McQuillan AJ (2011) J Phys Chem C 115:902–907CrossRefGoogle Scholar
  40. 40.
    Chen WP, Wang Y, Chan HLW (2008) Appl Phys Lett 92:112907CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Pu
    • 1
    • 2
  • H. Cachet
    • 1
    • 2
  • E. Ngaboyamahina
    • 1
    • 2
  • E. M. M. Sutter
    • 1
    • 2
  1. 1.UPMC Univ Paris 06, UPR 15, LISEParisFrance
  2. 2.CNRS, UPR 15, LISEParisFrance

Personalised recommendations