Journal of Solid State Electrochemistry

, Volume 17, Issue 3, pp 775–784 | Cite as

A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals

Original Paper


l-Dopa is the intermediate precursor of the neurotransmitter dopamine. Unlike dopamine, l-dopa easily enters the central nervous system. l-Dopa, as one of the catecholamines, is widely used as a source of dopamine in the treatment of most patients with Parkinson’s disease and epilepsy. Graphene (GR) is ideally suited for implementation in electrochemical applications due to its reported large electrical conductivity, large surface area, unique heterogeneous electron transfer rate, and low production costs. This work reports the synthesis of GR using a modified Brodie method and its application for the electrochemical determination of l-dopa in real samples. Electrochemical measurements were performed at glassy carbon electrode modified with graphene (GR/GCE) via drop casting method. Cyclic voltammograms of l-dopa at GR/GCE showed an increased current intensity compared with GCE. All the measurements were done in phosphate buffer solution 0.1 M (pH 6.2) and the oxidation peak was observed at 0.27 V vs. Ag/AgCl. The effect of scan rate showed that oxidation of l-dopa on GR/GCE was surface controlled. The oxidation peak current of l-dopa gradually increased with increasing accumulation time from 0 to 300 s and accumulation potential from 0.0 to 0.3 V and reached the maximum current response at 240 s and 0.2 V for the accumulation time and accumulation potential, respectively. Voltammetric peak currents showed a linear response for l-dopa concentration in the range of 0.04 to 79 μM and a detection limit of 0.022 μM (22 nM). The relative standard deviation for five determinations of 50 μM l-dopa was 0.52 %.


Glassy carbon electrode Graphene l-Dopa Modified Brodie method Surface controlled 

Supplementary material

10008_2012_1929_MOESM1_ESM.docx (17 kb)
Fig. S1(DOCX 16 kb)
10008_2012_1929_MOESM2_ESM.docx (17 kb)
Fig. S2(DOCX 16 kb)


  1. 1.
    Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (2008) Harrison’s principles of internal medicine, 17th edn. McGraw-Hill Companies, New York, Ch. 366Google Scholar
  2. 2.
    Aminoff MJ, Greenberg DA, Simon RP (2005) Clinical neurology, 6th edn. McGraw-Hill Medical, New York, p 233, Lange SeriesGoogle Scholar
  3. 3.
    Weiner WJ (2002) Parkinson’s disease; diagnosis & clinical management. Demos Medical Publishing, New YorkGoogle Scholar
  4. 4.
    Barnes HV (1998) Clinical medicine. Year Book Medical Publisher, New York, p 745Google Scholar
  5. 5.
    Misu Y, Goshima Y, Miyamae T (2002) Trends Pharmacol Sci 23:262–268CrossRefGoogle Scholar
  6. 6.
    Laitinen LV, Bergenheim AT, Hariz MI (1992) J Neurosurg 76:53–61CrossRefGoogle Scholar
  7. 7.
    Greenhow EJ, Spencer LE (1973) Analyst 98:485–492CrossRefGoogle Scholar
  8. 8.
    Hasan BA, Khalaf KD, Guardia MDL (1995) Talanta 42:627–633CrossRefGoogle Scholar
  9. 9.
    Siddhuraju P, Becker K (2001) Food Chem 72:389–394CrossRefGoogle Scholar
  10. 10.
    Zhao S, Bai W, Wang B, He M (2007) Talanta 73:142–146CrossRefGoogle Scholar
  11. 11.
    Teixeira MFS, Marcolino-Júnior LH, Fatibello-Filho O, Dockal ER, Bergamini MF (2007) Sens Actuators B 122:549–555CrossRefGoogle Scholar
  12. 12.
    Arvand M, Vaziri M, Vejdani M (2010) Mater Sci Eng C 30:709–714CrossRefGoogle Scholar
  13. 13.
    Gupta VK, Singh AK, Gupta B (2006) Anal Chim Acta 575:198–204CrossRefGoogle Scholar
  14. 14.
    Singh AK, Gupta VK, Gupta B (2007) Anal Chim Acta 585:171–178CrossRefGoogle Scholar
  15. 15.
    Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Anal Proc Incl Anal Commun 32:21–23CrossRefGoogle Scholar
  16. 16.
    Jain AK, Gupta VK, Sahoo BB, Singh LP (1995) Anal Proc Incl Anal Commun 32:99–101CrossRefGoogle Scholar
  17. 17.
    Jain AK, Gupta VK, Singh LP (1995) Anal Proc Incl Anal Commun 32:263–266CrossRefGoogle Scholar
  18. 18.
    Gupta VK, Goyal RN, Sharma RA (2009) Anal Chim Acta 647:66–71CrossRefGoogle Scholar
  19. 19.
    Srivastava SK, Gupta VK, Jain S (1996) Electroanalysis 8:938–940CrossRefGoogle Scholar
  20. 20.
    Jain AK, Gupta VK, Singh LP, Srivastava P, Raisoni JR (2005) Talanta 65:716–721CrossRefGoogle Scholar
  21. 21.
    Gupta VK, Singh AK, Gupta B (2007) Anal Chim Acta 583:340–348CrossRefGoogle Scholar
  22. 22.
    Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006) Sens Actuators B 113:182–186CrossRefGoogle Scholar
  23. 23.
    Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Electroanalysis 17:2217–2223CrossRefGoogle Scholar
  24. 24.
    Gupta VK, Mangla R, Agarwal S (2002) Electroanalysis 14:1127–1132CrossRefGoogle Scholar
  25. 25.
    Jain AK, Gupta VK, Khurana U, Singh LP (1997) Electroanalysis 9:857–860CrossRefGoogle Scholar
  26. 26.
    Gupta VK, Goyal RN, Sharma RA (2009) Int J Electrochem Sci 4:156–172Google Scholar
  27. 27.
    Prasad R, Gupta VK, Kumar A (2004) Anal Chim Acta 508:61–70CrossRefGoogle Scholar
  28. 28.
    Gupta VK, Ludwig R, Agarwal S (2005) Anal Chim Acta 538:213–218CrossRefGoogle Scholar
  29. 29.
    Gupta VK, Nayak A, Agarwal S, Singhal B (2011) Comb Chem High Throughput Screen 14:284–302CrossRefGoogle Scholar
  30. 30.
    Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Crit Rev Anal Chem 41:282–313CrossRefGoogle Scholar
  31. 31.
    Jain R, Gupta VK, Jadon N, Radhapyari K (2010) J Electroanal Chem 648:20–27CrossRefGoogle Scholar
  32. 32.
    Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electroanalysis 20:757–764CrossRefGoogle Scholar
  33. 33.
    Gupta VK, Kumar P (1999) Anal Chim Acta 389:205–212CrossRefGoogle Scholar
  34. 34.
    Gupta VK, Khayat A, Singh M, Pal MK (2009) Anal Chim Acta 634:36–43CrossRefGoogle Scholar
  35. 35.
    Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Anal Biochem 408:179–196CrossRefGoogle Scholar
  36. 36.
    Liu A, Wang E (1994) Talanta 41:147–154CrossRefGoogle Scholar
  37. 37.
    Gupta VK, Jain R, Agarwal S, Mishra R, Dwivedi A (2011) Anal Biochem 410:266–271CrossRefGoogle Scholar
  38. 38.
    Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Anal Biochem 407:79–88CrossRefGoogle Scholar
  39. 39.
    Gupta VK, Jain R, Jadon N, Radhapyari K (2010) J Colloid Interface Sci 350:330–335CrossRefGoogle Scholar
  40. 40.
    Goyal RN, Gupta VK, Chatterjee S (2009) Biosens Bioelectron 24:3562–3568CrossRefGoogle Scholar
  41. 41.
    Goyal RN, Gupta VK, Chatterjee S (2009) Biosens Bioelectron 24:1649–1654CrossRefGoogle Scholar
  42. 42.
    Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008) Sens Actuators B 134:816–821CrossRefGoogle Scholar
  43. 43.
    Goyal RN, Gupta VK, Chatterjee S (2008) Talanta 76:663–669CrossRefGoogle Scholar
  44. 44.
    Goyal RN, Gupta VK, Chatterjee S (2008) Electrochim Acta 53:5354–5360CrossRefGoogle Scholar
  45. 45.
    Goyal RN, Gupta VK, Bachheti N (2007) Anal Chim Acta 597:82–89CrossRefGoogle Scholar
  46. 46.
    Goyal RN, Gupta VK, Oyama M, Bachheti N (2007) Talanta 72:976–983CrossRefGoogle Scholar
  47. 47.
    Goyal RN, Gupta VK, Oyama M, Bachhet N (2006) Electrochem Commun 8:65–70CrossRefGoogle Scholar
  48. 48.
    Goyal RN, Gupta VK, Oyama M, Bachheti N (2005) Electrochem Commun 7:803–807CrossRefGoogle Scholar
  49. 49.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183–191CrossRefGoogle Scholar
  50. 50.
    Geim AK (2009) Science 324:1530–1534CrossRefGoogle Scholar
  51. 51.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  52. 52.
    Pumera M (2009) Chem Eur J 15:4970–4978CrossRefGoogle Scholar
  53. 53.
    Pumera M, Iwai H (2009) J Phys Chem C 113:4401–4405CrossRefGoogle Scholar
  54. 54.
    Pumera M, Iwai H (2009) Chem Asian J 4:554–560CrossRefGoogle Scholar
  55. 55.
    Dai X, Wildgoose GG, Compton RG (2006) Analyst 131:901–906CrossRefGoogle Scholar
  56. 56.
    Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) Sens Actuators B 132:356–360CrossRefGoogle Scholar
  57. 57.
    Pumera M, Iwai H, Miyahara Y (2009) Chem Phys Chem 10:1770–1773CrossRefGoogle Scholar
  58. 58.
    Ambrosi A, Pumera M (2010) Chem Eur J 16:1786–1792CrossRefGoogle Scholar
  59. 59.
    Pumera M, Miyahara Y (2009) Nanoscale 1:260–265CrossRefGoogle Scholar
  60. 60.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Trends Anal Chem 29:954–965CrossRefGoogle Scholar
  61. 61.
    Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Nat Nanotechnol 3:206–209CrossRefGoogle Scholar
  62. 62.
    Lee CG, Wei XD, Kysar JW, Hone J (2008) Science 321:385–388CrossRefGoogle Scholar
  63. 63.
    Liang JJ, Xu YF, Huang Y, Zhang L, Wang Y, Ma YF, Li FF, Guo TY, Chen YJ (2009) J Phys Chem C 113:9921–9927CrossRefGoogle Scholar
  64. 64.
    Yu D, Dai L (2010) J Phys Chem Lett 1:467–470CrossRefGoogle Scholar
  65. 65.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655CrossRefGoogle Scholar
  66. 66.
    Giljie S, Han S, Wang MS, Wang KL, Kaner RB (2007) Nano Lett 7:3394–3398CrossRefGoogle Scholar
  67. 67.
    Baby TT, Jyothirmayee Aravind SS, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Sens Actuators B 145:71–77CrossRefGoogle Scholar
  68. 68.
    Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Science 315:490–493CrossRefGoogle Scholar
  69. 69.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502CrossRefGoogle Scholar
  70. 70.
    Lu YH, Chen W, Feng YP, He PM (200) J Phys Chem B 113:2–5CrossRefGoogle Scholar
  71. 71.
    Wu XM, Hu YJ, Jin J, Zhou NL, Wu P, Zhang H, Cai CX (2010) Anal Chem 82:3588–3596CrossRefGoogle Scholar
  72. 72.
    Brodie BC (1860) Ann Chim Phys 59:466–472Google Scholar
  73. 73.
    El-Kosasy AM, Salem MY, El-Bardicy MG, El-Rahman MKA (2008) Chem Pharm Bull 6:753–757CrossRefGoogle Scholar
  74. 74.
    Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Adv Funct Mater 19:2782–2789CrossRefGoogle Scholar
  75. 75.
    Xiao F, Zhao F, Li J, Liu L, Zeng B (2008) Electrochim Acta 53:7781–7788CrossRefGoogle Scholar
  76. 76.
    Daneshgar P, Norouzi P, Ganjali MR, Ordikhani-Seyedlar A, Eshraghi H (2009) Colloids Surf B 68:27–32CrossRefGoogle Scholar
  77. 77.
    Shahrokhian S, Asadian E (2009) J Electroanal Chem 636:40–46CrossRefGoogle Scholar
  78. 78.
    Shahrokhian S, Ghalkhani M, Amini MK (2009) Sens Actuators B 137:669–675CrossRefGoogle Scholar
  79. 79.
    Shahrokhian S, Bozorgzadeh S (2006) Electrochim Acta 51:4271–4276CrossRefGoogle Scholar
  80. 80.
    Akhgar MR, Salari M, Zamani H (2011) J Solid State Electrochem 15:845–853CrossRefGoogle Scholar
  81. 81.
    Leite FR, Maroneze CM, de Oliveira AB, Santos WT, Damos FS, Luz Rde C (2012) Bioelectrochemistry 86:22–29CrossRefGoogle Scholar
  82. 82.
    Bergamini MF, Santos AL, Stradiotto NR, Zanoni MVB (2005) J Pharm Biomed Anal 39:54–59CrossRefGoogle Scholar
  83. 83.
    Prabhu P, Babu RS, Narayanan SS (2011) Sens Actuators B 156:606–614CrossRefGoogle Scholar
  84. 84.
    Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H (2004) J Electroanal Chem 569:47–52CrossRefGoogle Scholar
  85. 85.
    Hua G, Chen L, Guo Y, Wang X, Shao S (2010) Electrochim Acta 55:4711–4716CrossRefGoogle Scholar
  86. 86.
    Kalachar HCB, Basavanna S, Viswanatha R, Naik YA, Raj DA, Sudhad PN (2011) Electroanalysis 23:1107–1115CrossRefGoogle Scholar
  87. 87.
    Teixeira MFS, Bergamini MF, Marques CMP, Bocchi N (2004) Talanta 63:1083–1088CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations