Skip to main content
Log in

Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline cellulose (NCC)-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) composite mats have been prepared by electrospinning method. Polymer electrolytes formed by activating the composite mats with 1 M lithium bis(trifluoromethanesulfonyl)imide/1-butyl-3-methypyrrolidinium bis(trifluoromethanesulfonyl)imide electrolyte solution. The addition of 2 wt% NCC in PVdF-HFP improved the electrolyte retention and storage modulus of the separator by 63 and 15 %, respectively. The developed electrolyte demonstrated high value of ionic conductivity viz. 4 × 10−4 S cm−1 at 30 °C. Linear scan voltammetry revealed a wide electrochemical stability of the composite mat separator up to 5 V (vs. Li+/Li). Cyclic voltammetry of the polymer electrolyte with a graphite electrode in 2.5 to 0 V (vs. Li+/Li) potential range showed a reversible intercalation/de-intercalation of Li+ ions in the graphite. No peaks were observed related to the reduction of the electrolyte on the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shui J, Li JCM (2009) Platinum nanowires produced by electrospinning. Nano Lett 9:1307–1314

    Article  CAS  Google Scholar 

  2. Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG (2004) Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)–PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules 37:1787–1792

    Article  CAS  Google Scholar 

  3. Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR (2003) Transport properties of electrospun nylon 6 nonwoven mats. Eur Polymer J 39:1883–1889

    Article  CAS  Google Scholar 

  4. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715

    Article  CAS  Google Scholar 

  5. Srikanth K, Rahman MM, Tanaka H, Krishna KM, Soga T, Mishra MK, Jimbo T, Umeno M (2001) Investigation of the effect of sol processing parameters on the photoelectrical properties of dye-sensitized TiO2 solar cells. Sol Energy Mater Sol Cells 65:171–177

    Article  CAS  Google Scholar 

  6. Kim J-K, Cheruvally G, Li X, Ahn J-H, Kim K-W, Ahn H-J (2008) Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 178:815–820

    Article  CAS  Google Scholar 

  7. Cho T-H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181:155–160

    Article  CAS  Google Scholar 

  8. Cheruvally G, Kim J-K, Choi J-W, Ahn J-H, Shin Y-J, Manuel J, Raghavan P, Kim K-W, Ahn H-J, Choi DS, Song CE (2007) Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries. J Power Sources 172:863–869

    Article  CAS  Google Scholar 

  9. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta 50:69–75

    Article  CAS  Google Scholar 

  10. Persi L, Croce F, Scrosati B (2002) A LiTi2O4–LiFePO4 novel lithium-ion polymer battery. Electrochem Commun 4:92–95

    Article  CAS  Google Scholar 

  11. Morita M, Niida Y, Yoshimoto N, Adachi K (2005) Polymeric gel electrolyte containing alkyl phosphate for lithium-ion batteries. J Power Sources 146:427–430

    Article  CAS  Google Scholar 

  12. Edmondson CA, Wintersgill MG, Fontanella JJ, Gerace F, Scrosati B, Greenbaum SG (1996) High pressure NMR and electrical conductivity studies of gel electrolytes based on poly(acrylonitrile). Solid State Ionics 85:173–179

    Article  CAS  Google Scholar 

  13. Rao MM, Liu JS, Li WS, Liang Y, Zhou DY (2008) Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application. J Membr Sci 322:314–319

    Article  CAS  Google Scholar 

  14. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95

    Article  CAS  Google Scholar 

  15. Kufian MZ, Aziz MF, Shukur MF, Rahim AS, Ariffin NE, Shuhaimi NEA, Majid SR, Yahya R, Arof AK (2012) PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42

    Article  CAS  Google Scholar 

  16. Deepa M, Sharma N, Agnihotry SA, Chandra R, Sekhon SS (2002) Effect of mixed salts on the properties of gel polymeric electrolytes. Solid State Ionics 148:451–455

    Article  CAS  Google Scholar 

  17. Jeong H-S, Choi E-S, Kim JH, Lee S-Y (2011) Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries. Electrochim Acta 56:5201–5204

    Article  CAS  Google Scholar 

  18. French AD (1978) The crystal structure of native ramie cellulose. Carbohydr Res 61:67–80

    Article  CAS  Google Scholar 

  19. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336

    Article  Google Scholar 

  20. Hashaikeh R, Thomas HU, Berry R (2010) Crystalline sulfated cellulose II and its production from sulfuric acid hydrolysis of cellulose. United States Patent WO/2010/127451

  21. Kim J-W, Ji K-S, Lee J-P, Park J-W (2003) Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2. J Power Sources 119–121:415–421

    Article  Google Scholar 

  22. Nookala M, Kumar B, Rodrigues S (2002) Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nanosize alumina. J Power Sources 111:165–172

    Article  CAS  Google Scholar 

  23. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822

    Article  CAS  Google Scholar 

  24. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

  25. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  26. Azizi Samir MAS, Mateos AM, Alloin F, Sanchez J-Y, Dufresne A (2004) Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677

    Article  CAS  Google Scholar 

  27. Azizi Samir MAS, Chazeau L, Alloin F, Cavaillé JY, Dufresne A, Sanchez JY (2005) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903

    Article  CAS  Google Scholar 

  28. Alloin F, D’Aprea A, Kissi NE, Dufresne A, Bossard F (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55:5186–5194

    Article  CAS  Google Scholar 

  29. Lalia BS, Samad YA, Hashaikeh R (2012) Nanocrystalline-cellulose-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) nanocomposite films as a separator for lithium ion batteries. J Appl Polym Sci 126:E442–E448

    Article  Google Scholar 

  30. Jung H-R, Ju D-H, Lee W-J, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637

    Article  CAS  Google Scholar 

  31. Jiang Z, Carroll B, Abraham KM (1997) Studies of some poly(vinylidene fluoride) electrolytes. Electrochim Acta 42:2667–2677

    Article  CAS  Google Scholar 

  32. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  CAS  Google Scholar 

  33. Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Sahin Onder (Arkema Turkey and Middle East) for providing the sample of Kynar Powerflex® LBG. We would also like to thank Dr. Elena Guillen for her assistance in porometry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Hashaikeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalia, B.S., Samad, Y.A. & Hashaikeh, R. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17, 575–581 (2013). https://doi.org/10.1007/s10008-012-1894-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1894-1

Keywords

Navigation