Skip to main content
Log in

The theory of metal electronucleation applied to the study of fundamental properties of liposomes

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This short review describes how the theory of electrochemical metal nucleation considering non-stationary effects due to the activation of latent nucleation sites has been successfully translated and applied to describe phenomena observed on lipid membranes. This rather unexpected connection is merely formal, but has resulted in a completely new approach in liposome research. It has been proposed that hydrophobic active sites spontaneously and constantly appear and disappear on lipid membranes. These sites control the affinity of liposomes for hydrophobic surfaces and determine the permeability of the lipid membrane to small hydrophilic molecules. Thus, the kinetic models for liposome adhesion on hydrophobic substrates and for the spontaneous leakage of liposomal content are identical to that of non-stationary nucleation mentioned above. Therefore, the broad scope of the available work on metal nucleation has facilitated the interpretation of the data obtained in liposome research. Future applications of the nucleation model in the realm of liposomes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Lasic DD (1998) Trends Biotechnol 16:307–321

    Article  CAS  Google Scholar 

  2. Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophtalmic drug delivery. J Drug Deliv. doi:10.1155/2011/863734

  3. Fielding RM, Lasic DD (1999) Expert Opin Ther Pat 9:1679–1688

    Article  CAS  Google Scholar 

  4. Lasic DD, Papahadjopoulos D (1996) Curr Opin Solid St M 1:392–400

    Article  CAS  Google Scholar 

  5. Lasic DD, Templeton NS (1996) Adv Drug Deliver Rev 20:221–266

    Article  CAS  Google Scholar 

  6. Templeton NS, Lasic DD (1999) Mol Biotechnol 11:175–180

    Article  CAS  Google Scholar 

  7. Daly TA, Wang M, Regen SL (2011) Langmuir 27:2159–2161

    Article  CAS  Google Scholar 

  8. Radler J, Strey H, Sackmann E (1995) Langmuir 11:4539–4548

    Article  Google Scholar 

  9. Williams LM, Evans SD, Flynn TM, Marsh A, Knowles PF, Bushby RJ, Boden N (1997) Langmuir 13:751–757

    Article  CAS  Google Scholar 

  10. Keller CA, Kasemo B (1998) Biophys J 75:1397–1402

    Article  CAS  Google Scholar 

  11. Keller CA, Glasmastar K, Zhdanov VP, Kasemo B (2000) Phys Rev Lett 84:5443–5446

    Article  CAS  Google Scholar 

  12. Johnson JM, Ha T, Chu S, Boxer SG (2002) Biophys J 83:3371–3379

    Article  CAS  Google Scholar 

  13. Lipkowski J (2010) Phys Chem Chem Phys 12:13874–13887

    Article  CAS  Google Scholar 

  14. Xu S, Szymanski G, Lipkowski J (2004) J Am Chem Soc 126:12276–12277

    Article  CAS  Google Scholar 

  15. Sek S, Xu S, Chen M, Szymanski G, Lipkowski J (2008) J Am Chem Soc 130:5736–5743

    Article  CAS  Google Scholar 

  16. Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305–309

    Article  CAS  Google Scholar 

  17. Hellberg D, Scholz F, Schubert F, Lovric M, Omanovic D, Agmo Hernández V, Thede R (2005) J Phys Chem B 109:14715–14726

    Article  CAS  Google Scholar 

  18. Stauffer V, Stoodley R, Agak JO, Bizzotto D (2001) J Electroanal Chem 516:73–82

    Article  CAS  Google Scholar 

  19. Mårtensson C, Agmo Hernández V (2012) Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochemistry. doi:10.1016/j.bioelechem.2012.03.009

  20. Zutic V, Svetlicic V, Zimmermann AH, DeNardis NI, Frkanec R (2007) Langmuir 23:8647–8649

    Article  CAS  Google Scholar 

  21. Agmo Hernández V, Scholz F (2006) Langmuir 22:10723–10731

    Article  Google Scholar 

  22. Agmo Hernández V, Scholz F (2007) Langmuir 23:8650

    Article  Google Scholar 

  23. Milchev A (2008) Russ J Electrochem 44:619–645

    Article  CAS  Google Scholar 

  24. Agmo Hernández V, Scholz F (2008) Bioelectrochemistry 74:149–156

    Article  Google Scholar 

  25. Hermes M, Scholz F, Hardtner C, Walther R, Schild L, Wolke C, Lendeckel U (2011) Angew Chem Int Edit 50:6872–6875

    Article  CAS  Google Scholar 

  26. Hermes M, Czesnick C, Stremlau S, Stöhr C, Scholz F (2012) J Electroanal Chem 671:33–37

    Article  CAS  Google Scholar 

  27. Agmo Hernández V, Niessen J, Harnisch F, Block S, Greinacher A, Kroemer HK, Helm CA, Scholz F (2008) Bioelectrochemistry 74:210–216

    Article  Google Scholar 

  28. Zander S, Hermes M, Scholz F, Groening A, Helm CA, Vollmer D, Lendeckel U, Schild L (2012) J Solid State Electr 16:2391–2397

    Article  CAS  Google Scholar 

  29. Agmo Hernández V, Hermes M, Milchev A, Scholz F (2009) J Solid State Electr 13:639–649

    Article  Google Scholar 

  30. Milchev A (1998) J Electroanal Chem 457:35–46

    Article  Google Scholar 

  31. Milchev A (2002) Electrocrystallization. Fundamentals of nucleation and growth. Kluwer, USA

    Google Scholar 

  32. Agmo Hernández V, Milchev A, Scholz F (2009) J Solid State Electr 13:1111–1114

    Article  Google Scholar 

  33. DeNardis NI, Zutic V, Svetlicic V, Frkanec R, Tomasic J (2007) Electroanal 19:2444–2450

    Article  CAS  Google Scholar 

  34. Agmo Hernández V, Karlsson G, Edwards K (2011) Langmuir 27:4873–4883

    Article  Google Scholar 

  35. Barbet J, Machy P, Truneh A, Leserman LD (1984) Biochim Biophys Acta 772:347–356

    Article  CAS  Google Scholar 

  36. Szoka FC, Jacobson K, Papahadjopoulos D (1979) Biochim Biophys Acta 551:295–303

    CAS  Google Scholar 

  37. Straubinger RM, Hong K, Friend DS, Papahadjopoulos D (1983) Cell 32:1069–1079

    Article  CAS  Google Scholar 

  38. Polyansky AA, Volynsky PE, Nolde DE, Arseniev AS, Efremov RG (2005) J Phys Chem B 109:15052–15059

    Article  CAS  Google Scholar 

  39. Pyrkova DV, Tarasova NK, Pyrkov TV, Krylov NA, Efremov RG (2011) Soft Matter 7:2569–2579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Katarina Edwards, Department of Chemistry-BMC, Uppsala University for fruitful and interesting discussions on the subject and for providing the resources and facilities for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Agmo Hernández.

Additional information

The author dedicates this contribution to Prof. Alexander Milchev on his 70th birthday. I had the honor of meeting Prof. Milchev in Sofia in 2008, and his kindness and wisdom had a profound impact on me. His encouraging words were, and still are, a great source of inspiration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agmo Hernández, V. The theory of metal electronucleation applied to the study of fundamental properties of liposomes. J Solid State Electrochem 17, 299–305 (2013). https://doi.org/10.1007/s10008-012-1874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1874-5

Keywords

Navigation