Skip to main content
Log in

Hybrid material based on 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and Dawson polyoxoanion [P2Mo18O62]6−. Part II: further characterizations and catalytic oxidation of the NADH coenzyme

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this account, [BMIM]6P2Mo18O62 hybrid material was further characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. XRD illustrated that compared to the parent K6P2Mo18O62·nH2O, where 92 % of the structure is crystalline, 84 % of the structure of [BMIM]6P2Mo18O62 hybrid material is fine-grain amorphous and only 16 % is crystalline. This was attributed to the replacement of most of the protons and constitution water molecules in K6P2Mo18O62·nH2O by [BMIM]+ cations. TEM showed that K6P2Mo18O62·nH2O has uniform and spherical nanoparticles with an average diameter of ~100 nm. However, the hybrid material displayed less uniform morphology with spherical and variously shaped nanoparticles with diameters varying from ~10 to 100 nm. Raman spectroscopy of [BMIM]6P2Mo18O62 illustrated that peaks of the Dawson [P2Mo18O62]6− unit in [BMIM]6P2Mo18O62 hybrid material are not obvious due to the overlap with the peaks of [BMIM]+. The latter was related to the large number of [BMIM]+ cations surrounding the Dawson unit in the hybrid material. [BMIM]6P2Mo18O62 was immobilized on glassy carbon electrode and studied by electrochemistry. Linear sweep voltammetry illustrated that unlike the parent polyoxoanion [P2Mo18O62]6− which showed no particular catalytic activity towards the oxidation of the NADH coenzyme, the hybrid material [BMIM]6P2Mo18O62 is found to efficiently catalyze the oxidation of the NADH coenzyme at low overpotentials. Amperometry revealed high sensitivities (~1.97 μA mM−1 mm−2) and extended linearity (~9.1 mM) of [BMIM]6P2Mo18O62/GC electrode towards the oxidation of the NADH coenzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pope MT, Muller A (1991) Polyoxometalates: from platonic solids to anti-retroviral activity, Klewer Academic

  2. Katsoulis DE (1998) Chem Rev 98:359–387

    Article  CAS  Google Scholar 

  3. Hill CL (1998) Chem Rev 98:1–390

    Article  CAS  Google Scholar 

  4. Keita B, Nadjo L (2007) J Mol Catal A-Chem 262:190–215

    Article  CAS  Google Scholar 

  5. Gomez-Romero P, Lira-Cantu M (1997) Adv Mater 9:144–147

    Article  CAS  Google Scholar 

  6. Ammam M, Keita B, Nadjo L, Mbomekalle IM, Fransaer J (2010) Electrochim Acta 55:3213–3222

    Article  CAS  Google Scholar 

  7. Ma H, Gu Y, Zhang Z, Pang H, Li S, Kang L (2011) Electrochim Acta 56:7428–7432

    Article  CAS  Google Scholar 

  8. Ammam M, Keita B, Nadjo L, Mbomekalle IM, Ritorto MD, Anderson TM, Neiwert WA, Hill CL, Fransaer J (2011) Electroanal 23:1427–1434

    Article  CAS  Google Scholar 

  9. Ammam M, Mbomekalle IM, Keita B, Nadjo L, Anderson MT, Zhang X, Hardcastle KI, Hill CL, Fransaer J (2010) J Electroanal Chem 647:97–102

    Article  CAS  Google Scholar 

  10. Hao XL, Luo MF, Wang X, Feng XJ, Li YG, Wang YH, Wang EB (2011) Inorg Chem Commun 14:1698–1702

    Article  CAS  Google Scholar 

  11. Ammam M, Mbomekalle IM, Keita B, Nadjo L, Fransaer J (2010) Electrochim Acta 55:3118–3122

    Article  CAS  Google Scholar 

  12. Ammam M, Fransaer J (2011) J Electrochem Soc 158:A14–A21

    Article  CAS  Google Scholar 

  13. Ammam M, Fransaer J (2011) J Solid State Chem 184:818–824

    Article  CAS  Google Scholar 

  14. Ammam M, Easton EB (2012) Sensor Actuat B-Chem 16:520–527

    Article  Google Scholar 

  15. Ammam M, Easton EB (2011) J Mater Chem 21:7886–7891

    Article  CAS  Google Scholar 

  16. Cui FY, Ma XY, Li L, Dong T, Gao YZ, Han ZG, Chin YN, Hu CW (2010) J Solid State Chem 183:2925–2931

    Article  CAS  Google Scholar 

  17. Dai LM, You WS, Li YG, Wang EB, Huang CY (2009) Chem Commun 2721–2723

  18. Leng Y, Wang J, Zhu D, Shen L, Zhao P, Zhang M (2011) Chem Eng J 173:620–626

    Article  CAS  Google Scholar 

  19. Ritchie C, Li F, Pradeep CP, Long DL, Xu L, Cronin L (2009) Dalton Trans 6483–6486

  20. Ammam M, Easton EB (2011) Electrochim Acta 56:28472855

    Article  Google Scholar 

  21. Dijken JP, Scheffers WA (1986) FEMS Microbiol Rev 32:199–224

    Google Scholar 

  22. Mayevsky A, Chance B (2007) Mitochondrion 7:330–339

    Article  CAS  Google Scholar 

  23. Gorton L (2002) Electrochemistry of NAD(P)+/NAD(P)H. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry. Wiley, Weinheim, pp 67–143

    Google Scholar 

  24. Sami P, Rajasekaran K (2009) J Chem Science 121:155–161

    Article  CAS  Google Scholar 

  25. Bi LH, Kortz U, Dickman MH, Nellutla S, Dalal NS, Keita B, Nadjo L, Prinz M, Neumann M (2006) J Cluster Sci 17:143–165

    Article  CAS  Google Scholar 

  26. Li Y, Yang X, Yang F, Wang Y, Zheng P, Liu X (2012) Electrochim Acta 66:188–192

    Article  CAS  Google Scholar 

  27. Essaadi K, Keita B, Nadjo L, Contant R (1994) J Electroanal Chem 367:275–278

    Article  CAS  Google Scholar 

  28. Ammam M, Keita B, Nadjo L, Mbomekalle IM, Fransaer J (2010) J Electroanal Chem 645:65–73

    Article  CAS  Google Scholar 

  29. Misono M (2001) Chem Commun 1141–1152

  30. Choi E, Park K, Yang C, Kim H, Son J, Lee SW, Lee YH, Min D, Kwon Y (2004) Chem Eur J 10:5535–5540

    Article  CAS  Google Scholar 

  31. Rocchiccioli-Deltcheff C, Thouvenot R, Franck R (1976) Spectrochim Acta 32A:587–597

    CAS  Google Scholar 

  32. Valle G, Matkovic S, Gambaro L, Briand L (2006) The environmentally friendly synthesis of heteropolyacids. In: Regalbuto J (ed) Catalyst preparation—science and engineering. CRC, Boca Raton, pp 75–92

    Chapter  Google Scholar 

  33. Berg RW, Deetlefs M, Seddon KR, Shim I, Thompson JM (2005) J Phys Chem B109:19018–19025

    Google Scholar 

  34. Rivera-Rubero S, Baldelli S (2006) J Phys Chem B110:4756–4765

    Google Scholar 

  35. Ni F, Feng H, Gorton L, Cotton TM (1990) Langmuir 6:66–73

    Article  CAS  Google Scholar 

  36. Dai H, Xu H, Lin Y, Wu X, Chen G (2009) Electrochem Commun 11:343–348

    Article  CAS  Google Scholar 

  37. Liu Y, Zhang HL, Lai GS, Yu AM, Huang YM, Han DY (2010) Electroanal 22:1725–1732

    Article  CAS  Google Scholar 

  38. Zhu L, Yang R, Jiang X, Yang D (2009) Electrochem Commun 11:530–533

    Article  CAS  Google Scholar 

  39. Lawrence NS, Wang J (2006) Electrochem Commun 8:71–76

    Article  CAS  Google Scholar 

  40. Prasad KS, Chen JC, Ay C, Zen JM (2007) Sensors Actuat B-Chem 123:715–719

    Article  Google Scholar 

  41. Deng C, Chen J, Chen XL, Xiao C, Nie Z, Yao S (2008) Electrochem Commun 10:907–909

    Article  CAS  Google Scholar 

  42. Zhang MG, Smith A, Gorski W (2004) Anal Chem 76:5045–5050

    Article  CAS  Google Scholar 

  43. Wu L, Zhang X, Ju H (2007) Anal Chem 79:453–458

    Article  CAS  Google Scholar 

  44. Prieto-Simón B, Fàbregas E (2004) Biosens Bioelectron 19:1131–1138

    Article  Google Scholar 

  45. Behera S, Sampath S, Raj CR (2008) J Phys Chem C112:3734–3740

    Google Scholar 

  46. Zhu L, Zhai J, Yang R, Tian C, Guo L (2007) Biosens Bioelectron 22:2768–2773

    Article  CAS  Google Scholar 

  47. Radoi A, Compagnone D, Valcarcel MA, Placidi P, Materazzi S, Moscone D, Palleschi G (2008) Electrochim Acta 53:2161–2169

    Article  CAS  Google Scholar 

  48. Manso J, Mena ML, Yanez-Sedeno P, Pingarron JM (2008) Electrochim Acta 53:4007–4012

    Article  CAS  Google Scholar 

  49. Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikem Y (2008) Electrochim Acta 53:4167–4175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada, and UOIT. We thank Dr. Ranganathan Santhanam (UOIT) for assistance with Raman, Dr. Richard B. Gardiner (University of Western Ontario) for TEM, and Wen He Gong (McMaster University) for XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malika Ammam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammam, M., Easton, E.B. Hybrid material based on 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and Dawson polyoxoanion [P2Mo18O62]6−. Part II: further characterizations and catalytic oxidation of the NADH coenzyme. J Solid State Electrochem 17, 137–143 (2013). https://doi.org/10.1007/s10008-012-1869-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1869-2

Keywords

Navigation