Electrochemical synthesis of Ni–MoO3 composite films: redox-mediated mechanism of electrochemical growth of metal–matrix composite


The Ni–MoO3 composite films exhibiting low coefficient of friction (∼0.05) were obtained by electrolytic co-deposition of nickel with MoO3 microcrystals of layered structure synthesized via solvothermal method. It has been shown that the redox activity inherent in molybdenum trioxide ensures efficient overgrowing of the trapped MoO3 particles and their strong bonding with the metal matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Hovestad A, Janssen LJJ (1995) Electrochemical codeposition of inert particles in a metallic matrix. J Appl Electrochem 25:519–527

    Article  CAS  Google Scholar 

  2. 2.

    Landolt D (2002) Electrodeposition science and technology in the last quarter of the twentieth century. J Electrochem Soc 149:S9–S20

    Article  CAS  Google Scholar 

  3. 3.

    Musiani M (2000) Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim Acta 45:3397–3402

    Article  CAS  Google Scholar 

  4. 4.

    Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383

    Article  CAS  Google Scholar 

  5. 5.

    Ferkel H, Müller B, Riehemann W (1997) Electrodeposition of particle-strengthened nickel films. Mater Sci Eng A 234–236:474–476

    Google Scholar 

  6. 6.

    Vidrine AB, Podlaha EJ (2001) Composite electrodeposition of ultrafine γ-alumina particles in nickel matrices. J Appl Electrochem 31:461–468

    Article  CAS  Google Scholar 

  7. 7.

    Zimmerman AF, Palumbo G, Aust KT, Erb U (2002) Mechanical properties of nickel silicon carbide nanocomposites. Mater Sci Eng A 328:137–146

    Article  Google Scholar 

  8. 8.

    Chang YC, Chang YY, Lin CL (1998) Process aspects of the electrolytic codeposition of molybdenum disulfide with nickel. Electrochim Acta 43:315–324

    Article  CAS  Google Scholar 

  9. 9.

    Ghouse M (1980) Electrocodeposited composites of graphite, molybdenum disulfide with copper for tribological applications. Met Finish 78:55–60

    Google Scholar 

  10. 10.

    Ghouse M, Viswanathan M, Ramachandran EG (1980) Electrodeposition of nickel-molybdenum disulfide and nickel-tungsten disulfide. Met Finish 78:44–47

    CAS  Google Scholar 

  11. 11.

    Wang LM (2008) Effect of surfactant BAS on MoS2 codeposition behavior. J Appl Electrochem 38:245–249

    Article  CAS  Google Scholar 

  12. 12.

    Borodin N (1979) Self-lubricating nickel coatings containing oxides, carbides, and borides. Powder Metall Met Ceram 18:112–116

    Google Scholar 

  13. 13.

    Sviridova TV, Stepanova LI, Sviridov DV (2012) Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis. In: Ortiz M, Herrera T (eds) Molybdenum: characteristics, production and applications. Nova, New York

    Google Scholar 

  14. 14.

    Sadakane M, Stechan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219–237

    Article  CAS  Google Scholar 

  15. 15.

    Wang BX, Dong DSJ (1994) Electrocatalytic properties of mixed-valence molybdenum oxide thin film modified microelectrodes. J Electroanal Chem 379:207–214

    Article  Google Scholar 

  16. 16.

    Zelaya-Angel O, Menezes C, Sánchez-Sinencio F, Ferreira GFL (1980) Electron diffusion and electrochromism in MoO3 amorphous films. J Appl Phys 51:6022–6026

    Article  CAS  Google Scholar 

  17. 17.

    Patterson TA, Carver CJ, Leyden DE, Hercules DM (1976) A surface study of cobalt-molybdena-alumina catalysts using X-ray photoelectron spectroscopy. J Phys Chem 80:1700–1708

    Article  CAS  Google Scholar 

  18. 18.

    Winer WO (1967) Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10:422–452

    Article  CAS  Google Scholar 

  19. 19.

    Jolivet J-P (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, Chichester

    Google Scholar 

Download references


This work was supported by the Basic Research Foundation of Belarus under the grant X12MS-007 and EU FP project “Photocontrol.”

Author information



Corresponding author

Correspondence to D. V. Sviridov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(PDF 78 kb)

Figure S2

(PDF 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sviridova, T.V., Stepanova, L.I. & Sviridov, D.V. Electrochemical synthesis of Ni–MoO3 composite films: redox-mediated mechanism of electrochemical growth of metal–matrix composite. J Solid State Electrochem 16, 3799–3803 (2012). https://doi.org/10.1007/s10008-012-1816-2

Download citation


  • Composite film
  • Electrodeposition
  • Molybdenum trioxide
  • Redox activity