Skip to main content
Log in

Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate–LiClO4

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ion transport in the new three-dimensional network polymer electrolytes that are completely amorphous in the solid state has been studied on the example of the matrix model with a monomer—polyethylene glycol diacrylate, cross-linked by radical polymerization. The nature of ionic conductivity in solid polymer electrolytes based on polyethylene glycol diacrylate at different concentrations of salt LiClO4 was studied by methods of electrochemical impedance, differential scanning calorimetry analysis, Fourier transform infrared spectroscopy and quantum chemical modeling. The maximum value of conductivity in the range of 20–100 °C is realized at 20 wt% content of LiClO4. The reason for the low conductivity of the SPE studied is the small degree of dissociation of contact ion pairs. At the increase in the salt content associates of contact pairs Li+ClO 4 , dimers and trimers (at LiClO4 >20 wt%) are formed. The appearances of trimers are accompanied by a decrease in conductivity due to lowering of contact pair content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Chandrasekhar V (1998) Adv Polym Sci 135:139–205

    Article  CAS  Google Scholar 

  3. Huggins RA (2009) Advanced batteries. Springer Science Business Media, New York

    Google Scholar 

  4. Irzhak VI, Rozenberg BA, Enikolopyan NS (1979) Network polymers: Synthesis, structure, properties. Nauka, Moscow (in Russian)

    Google Scholar 

  5. Hiemenz PC (1984) Polymer chemistry: the basic concepts. Basel, New York

    Google Scholar 

  6. Park HG, Ryu SW (2010) Polym Korea 34:357–362

    CAS  Google Scholar 

  7. Tang DG, Liu JH, Ci YX, Qi L (2005) Acta Phys Chim Sin 21:1263–1268

    CAS  Google Scholar 

  8. Kang WC, Park HG, Kim KC, Ryu SW (2009) Electrochim Acta 54:4540–4544

    Article  CAS  Google Scholar 

  9. Caillon-Caravanier M, Claude-Montigny B, Lemordant D, Bosser G (2003) Solid State Ionics 156:113–127

    Article  CAS  Google Scholar 

  10. Hashmi SA, Kumar A, Tripathi SK (2007) J Phys D Appl Phys 40:6527–6534

    Article  CAS  Google Scholar 

  11. Vondrak J, Reiter J, Velicka J, Klapste B, Sedlarikova M, Dvorak J (2005) J Power Sources 146:436–440

    Article  CAS  Google Scholar 

  12. Ramesh S, Ang GP (2010) Ionics 16:465–473

    Article  CAS  Google Scholar 

  13. Reiter J, Vondrak J, Micka Z (2005) Electrochim Acta 50:4469–4476

    Article  CAS  Google Scholar 

  14. Cho BW, Kim DH, Lee HW, Na BK (2007) Korean J Chem Eng 24:1037–1041

    Article  CAS  Google Scholar 

  15. Lee KH, Lim HS, Wang JH (2005) J Power Sources 139:284–288

    Article  CAS  Google Scholar 

  16. Zhou S, Kim D (2010) Polym Adv Technol 21:797–801

    Article  CAS  Google Scholar 

  17. Lin H, Wagner EV, Swinnea JS, Freeman BD, Pas SJ, Hill AJ, Kalakkunnath S, Kalika DS (2006) J Membr Sci 276:145–161

    Article  CAS  Google Scholar 

  18. Yarmolenko OV, Efimov ON, Kotova AV, Matveeva IA (2003) Russ J Electrochem 39:513–519

    Article  CAS  Google Scholar 

  19. Yarmolenko OV, Baskakova YUV, Tulibaeva GZ, Bogdanova LM, Dzhavadyan EA, Komarov BA, Surkov NF, Rozenberg BA, Efimov ON (2009) Russ J Electrochem 45:101–107

    Article  CAS  Google Scholar 

  20. Ishmukhametova KG, Yarmolenko OV, Bogdanova LM, Rozenberg BA, Efimov ON (2009) Russ J Electrochem 45:558–563

    Article  CAS  Google Scholar 

  21. Marinin AA, Khatmullina KG, Volkov VI, Yarmolenko OV (2011) Russ J Electrochem 47:717–725

    Article  CAS  Google Scholar 

  22. Khatmullina KG, Yarmolenko OV, Bogdanova LM (2010) Polym Sci Ser A Polym Phys 52:1327–1333

    Article  Google Scholar 

  23. Abbrent S (2000) Lithium ion interactions in polymer gel electrolytes: effects on structure, dynamics and morthology. Doctoral thesis, Acta Universitatis Upsaliensis, Uppsala

  24. Abbrent S, Lindgren J, Tegenfeldt J, Wendsjo A (1998) Electrochim Acta 43:1185–1191

    Article  CAS  Google Scholar 

  25. Wang FM, Lee JT, Cheng JH, Cheng ChSh, Yang ChR (2009) J Solid State Electrochem 13:1425–1431

    Article  CAS  Google Scholar 

  26. Reiche A, Tubke J, Sandner R, Werther A, Sandner B, Fleischer G (1998) Electrochim Acta 43:1429

    Article  CAS  Google Scholar 

  27. Itoh T, Mitsuda Y, Ebina T, Uno T, Kubo M (2009) J Power Sources 189:531–535

    Article  CAS  Google Scholar 

  28. Golodnitsky D, Kovarsky R, Mazor H, Rosenberg Y, Lapides I, Peled E, Wieczorek W, Plewa A, Siekierski M, Kalita M, Settimi L, Scrosati B, Scanlon LG (2007) J Electrochem Soc 154:A547–A553

    Article  CAS  Google Scholar 

  29. Perdew P, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  30. Laikov DN (1997) Chem Phys Lett 281:151–156

    Article  CAS  Google Scholar 

  31. Siqueira LJA, Ribeiro MCC (2005) J Chem Phys 122:194911–194918

    Article  Google Scholar 

  32. Ducasse L, Dussauze M, Grondin J, Lassegues JC, Naudin C, Servant L (2003) Phys Chem Chem Phys 5:567–574

    Article  CAS  Google Scholar 

  33. Linden D, Reddy TB (eds) (2002) Handbook of batteries (3rd edn.) McGraw-Hill, New York

  34. Dey A, Kagan S, De SK (2010) J Phys Chem Solids 71:329–335

    Article  CAS  Google Scholar 

  35. Sim LH, Gan SN, Chan CH, Yahya R (2010) Spectrochim Acta Part A 76:287–292

    Article  CAS  Google Scholar 

  36. Martinez-Haya B, Hurtado P, Hortal AR, Hamad S, Steill JD, Oomens J (2010) J Phys Chem A 114:7048–7054

    Article  CAS  Google Scholar 

  37. Musharaf Ali S, Maity DK, De S, Shenoi MRK (2008) Desalination 232:181–190

    Article  Google Scholar 

  38. De S, Boda A, Ali SM (2010) J Mol Struct (THEOCHEM) 941:90–101

    Article  CAS  Google Scholar 

  39. Johansson P, Tegenfeldt J, Lindgren J (1999) Polymer 42:4399–4406

    Article  Google Scholar 

  40. Dhuaml NR, Gejji SP (2006) Theor Chem Accounts 115:308–321

    Article  CAS  Google Scholar 

  41. Borodin O, Smith GD (1998) Macromolecules 31:8396–8406

    Article  CAS  Google Scholar 

  42. Duan Y, Halley JW, Curtiss L, Redfern P (2005) J Chem Phys 122:054702–054709

    Article  Google Scholar 

  43. Mao G, Saboungi ML, Price DL, Badyal YS, Fischer HE (2001) Europhys Lett 54:347–353

    Article  CAS  Google Scholar 

  44. Robitaille CD, Fauteux D (1986) J Electrochem Soc 133:315–325

    Article  CAS  Google Scholar 

  45. Henderson WA, Brooks NR (2003) Inorg Chem 42:4522–4524

    Article  CAS  Google Scholar 

  46. Baboul AG, Redfern PC, Sutjianto A, Curtiss LA (1999) J Am Chem Soc 121:7220–7227

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Baskakov S.A. for measuring of the FTIR spectra. This work was supported by the grant of the Russian Foundation for Basic Research no. 10-03-00862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Z. Tulibaeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarmolenko, O.V., Khatmullina, K.G., Tulibaeva, G.Z. et al. Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate–LiClO4 . J Solid State Electrochem 16, 3371–3381 (2012). https://doi.org/10.1007/s10008-012-1781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1781-9

Keywords

Navigation