Skip to main content
Log in

Deposition and characterization of BiVO4 thin films and evaluation as photoanodes for methylene blue degradation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Thin films of bismuth vanadate (BiVO4) are deposited through the solution combustion synthesis technique coupled with the dip-coating process. Thermal gravimetric analyis shows a total mass loss of 71 % besides the formation of the monoclinic phase, about 300 °C, which is also revealed by X-ray diffraction. UV–Vis optical absorption spectra show direct bandgap transition about 2.5 eV for films, in good agreement with semiconducting monoclinic phase. Scanning electron microscopic images reveal that thermal annealing time at 500 °C is a very important parameter to control the thickness and shape of the particles and yields an average thickness of about 800 nm for 10 dip-coated deposited layers, with round-shaped nanometric-sized particles, homogeneously distributed on the film surface. Photoelectrochemical degradation of methylene blue by a bismuth vanadate film deposited on fluor-doped tin oxide substrate shows up as a very efficient process. The first-order rate constant for the photoinduced process is about five times the rate constant for degradation in the dark, showing the capacity of the BiVO4/fluorine-doped tin oxide film for electrochemical degradation, mainly in the presence of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akihiko K, Yugo M (2009) Chem Soc Rev 38:253–278

    Article  Google Scholar 

  2. Rajeshwar K, de Tacconi NR (2009) Chem Soc Rev 38:1984–1998

    Article  CAS  Google Scholar 

  3. Xie B, He C, Cai P, Xiong Y (2010) Thin Solid Films 518:1958–1961

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  5. Lim AR, Lee KH, Choh SH (1992) Solid State Commun 83:185–186

    Article  CAS  Google Scholar 

  6. Hirota K, Komatsu G, Yamashita M, Takemura H, Yamaguchi O (1992) Mater Res Bull 27:823–830

    Article  CAS  Google Scholar 

  7. Tucks A, Beck HP (2007) Dyes Pigm 72:163–177

    Article  Google Scholar 

  8. Zhang A, Zhang J (2009) Spectrochimica Acta Part A 73:336–341

    Article  Google Scholar 

  9. Yin WZ, Wang WZ, Shang M, Zhou L, Sun SM, Wang L (2009) Eur J Inorg Chem 2009:4379–4384

    Article  Google Scholar 

  10. Dunkle SS, Helmich RJ, Suslick KS (2009) J Phys Chem C 113:11980–11983

    Article  CAS  Google Scholar 

  11. Long MC, Cai WM, Kisch H (2008) J Phys Chem C 112:548–554

    Article  CAS  Google Scholar 

  12. Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H (2006) J Phys Chem B 110:11352–11360

    Article  CAS  Google Scholar 

  13. Kudo A, Ueda K, Kato H, Mikami I (1998) Catal Lett 53:229–230

    Article  CAS  Google Scholar 

  14. Walsh A, Yan Y, Huda MN, Al-Jassim MN, Wei SH (2009) Chem Mater 21:547–551

    Article  CAS  Google Scholar 

  15. Zhou B, Qu J, Zhao X, Liu H (2011) J Environ Sci 23:151–159

    Article  CAS  Google Scholar 

  16. Tokunaga S, Kato H, Kudo A (2001) Chem Mater 13:4624–4628

    Article  CAS  Google Scholar 

  17. Jiang H, Endo H, Natori H, Nagai M, Kobayashi K (2009) Mat Res Bull 44:700–705

    Article  CAS  Google Scholar 

  18. Lim AR, Choh SH, Jang MH (1995) J Phys Condens Matter 7:7309–7323

    Article  CAS  Google Scholar 

  19. Yu J, Kudo A (2006) Ad Funct Mater 16:2163–2169

    Article  CAS  Google Scholar 

  20. Zhang L, Chen D, Jiao X (2006) J Phys Chem B 110:2668–2673

    Article  CAS  Google Scholar 

  21. Zhou L, Wang W, Liu S, Zhang L, Xu H, Zhu W (2006) J Mol Catal A: Chem 252:120–124

    Article  CAS  Google Scholar 

  22. Yu J, Zhang Y, Kudo A (2009) J Solid State Chem 182:223–228

    Article  CAS  Google Scholar 

  23. Zhou L, Wang W, Zhang L, Xu H, Zhu W (2007) J Phys Chem C 111:13659–13663

    Article  CAS  Google Scholar 

  24. Dall’Antonia LH, de Tacconi NR, Chanmanee W, Timmaji H, Myung N, Rajeshwar K (2010) Electrochem Solid State Lett 13:D29–D32

    Article  Google Scholar 

  25. Liu H, Nakamura R, Nakato Y (2005) J Electrochem Soc 152:G856–G861

    Article  Google Scholar 

  26. Timmaji HK, Chanmanee W, de Tacconi NR, Rajeshwar K (2011) J Adv Oxid Technol 14:95–105

    Google Scholar 

  27. Zhang X, Chen S, Quan X, Zhao H (2009) Sep Pur Technol 64:309–313

    Article  CAS  Google Scholar 

  28. Zhang X, Quan X, Chen S, Zhang Y (2010) J Hazard Mater 177:914–917

    Article  CAS  Google Scholar 

  29. Jiang HQ, Endo H, Natori H, Nagai M, Kobayashi K (2008) J Eur Ceram Soc 28:2955–2962

    Article  CAS  Google Scholar 

  30. Li M, Zhao L, Guo L (2010) Int J Hydrogen Energy 35:7127–7133

    Article  CAS  Google Scholar 

  31. Pérez UMG, Sepulveda-Guzman S, Cruz AM, Méndez UO (2011) J Mol Catal A: Chem 335:169–175

    Article  Google Scholar 

  32. Toulboul M, Vachon C (1988) Thermochim Acta 133:61–66

    Article  Google Scholar 

  33. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  34. Li G, Zhang D, Yu JC (2008) Chem Mater 20:3985–3989

    Google Scholar 

  35. Bhattacharya AK, Mallick KK, Hartridge A (1997) Mat Lett 30:7–13

    Article  CAS  Google Scholar 

  36. Wang F, Shao M, Cheng L, Hua J, Wei X (2009) Mat Res Bull 44:1687–1691

    Article  CAS  Google Scholar 

  37. Zhang X, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Mat Chem Phys 103:162–167

    Article  CAS  Google Scholar 

  38. Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB (2011) J Phys Chem C 115:3794–3802

    Article  CAS  Google Scholar 

  39. Su J, Guo L, Bao N, Grimes CA (2011) Nano Lett 11:1928–1933

    Article  CAS  Google Scholar 

  40. Luo H, Mueller AH, McCleskey TM, Burrell AK, Bauer E, Jia QX (2008) J Phys Chem C 112:6099–6102

    Article  CAS  Google Scholar 

  41. Kho YK, Teoh WY, Iwase A, Mädler L, Kudo A, Amal R (2011) Appl Mater Interfaces 3:1997–2004

    Article  CAS  Google Scholar 

  42. Zhou Y, Vuille K, Heel A, Probst B, Kontic R, Patzke GR (2010) Appl Catal A 375:140–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Margarida J. Saeki for the SEM images. They also acknowledge CNPq, FAPESP, and Fundação Araucaria (15585/2010) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. A. Scalvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, M.R., Dall’Antonia, L.H., Scalvi, L.V.A. et al. Deposition and characterization of BiVO4 thin films and evaluation as photoanodes for methylene blue degradation. J Solid State Electrochem 16, 3267–3274 (2012). https://doi.org/10.1007/s10008-012-1765-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1765-9

Keywords

Navigation