Skip to main content
Log in

Preparation, characterization, and electrochemical studies of sulfur-bearing nickel in an ammoniacal electrolyte: the influence of thiourea

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sulfur-bearing nickel was prepared by a direct electrodeposition in an ammoniacal Ni(II) electrolyte containing thiourea. This sulfur-bearing nickel showed an excellent dissolving activity when used as anodic materials in the traditional Watt bath. The influence of thiourea on the surface microstructure, crystallization texture, and electrocrystallization process of sulfur-bearing nickel were investigated by scanning electron microscopy, X-ray diffraction, and electrochemical techniques. The results show that the S element is uniformly distributed in the electrodeposited nickel. The prepared nickel samples present a blade shape microstructure, and the blade size decreases by the addition of thiourea. Sulfur-bearing nickel exhibits face-centered cubic structure and (111) preferred orientation, and the orientation distribution is strengthened with increased thiourea concentration. The nucleation parameters, such as N 0, A, and J 0, are obtained from the initial parts of the transients making use of Sharifker–Mostany theoretical model. Both the nucleation rate and the vertical growth rate are increased by the addition of thiourea, leading to finer grains and better dissolving activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bear IJ, Flann RC, Mcdonald KJ, Rogers LJ, Woods R (1992) J Appl Electrochem 22:8–15

    Article  CAS  Google Scholar 

  2. He HW, Liu HJ, Liu F, Zhou KC (2006) Surf Coat Technol 201:958–964

    Article  CAS  Google Scholar 

  3. Gonzalez ER, Avaca LA, Tremiliosi-Filho G, Machado SAS, Ferreira M (1994) Int J Hydrogen Energy 19:17–21

    Article  CAS  Google Scholar 

  4. Hine F, Yasuda M, Wang F, Yamakawa K (1971) Electrochim Acta 16:1519–1531

    Article  CAS  Google Scholar 

  5. Paseka I (1993) Electrochim Acta 38:2449–2454

    Article  CAS  Google Scholar 

  6. Sabela R, Paseka I (1990) J Appl Electrochem 20:500–505

    Article  CAS  Google Scholar 

  7. Våland T, Burchardt T, Grøntoft T (2002) Int J Hydrogen Energy 27:39–44

    Article  Google Scholar 

  8. Park KH, Mohapatra D, Reddy BR, Nam CW (2007) Hydrometallurgy 86:164–171

    Article  CAS  Google Scholar 

  9. Bhuntumkomol K, Han KN, Lawson F (1982) Hydrometallurgy 8:147–160

    Article  CAS  Google Scholar 

  10. Zheng GQ, Zheng LF, Cao HZ, Gao ZF, Ni SY, Zhang JY (2003) Trans Nonferrous Met Soc China 13:217–220

    CAS  Google Scholar 

  11. Danaee I, Shoghi F, Dehghani Mobarake M, Kameli M (2010) J Solid State Electrochem 14:57–62

    Article  CAS  Google Scholar 

  12. Tsakova V (2008) J Solid State Electrochem 12:1421–1434

    Article  CAS  Google Scholar 

  13. De Henau K, Huygens I, Strubbe K (2010) J Solid State Electrochem 14:83–91

    Article  CAS  Google Scholar 

  14. Yang ZN, Zhang Z, Zhang JQ (2006) Surf Coat Technol 200:4810–4815

    Article  CAS  Google Scholar 

  15. Hasse U, Fletcher S, Scholz F (2006) J Solid State Electrochem 10:833–840

    Article  CAS  Google Scholar 

  16. Milchev A, Heerman L (2003) Electrochim Acta 48:2903–2913

    Article  CAS  Google Scholar 

  17. Heerman L, Tarallo A (1999) J Electroanal Chem 470:70–76

    Article  CAS  Google Scholar 

  18. Sluyters-Rehbach M, Wijenberg JHOJ, Bosco E, Sluyters JH (1987) J Electroanal Chem 23:1–20

    Google Scholar 

  19. Argaňaraz MBQ, Vázquez CI, Lacconi GI (2010) J Electroanal Chem 639:95–101

    Article  Google Scholar 

  20. Zheng GU, Cao HZ, Zheng LF (2007) J Appl Electrochem 37:799–803

    Article  CAS  Google Scholar 

  21. Fletcher S, Gates D, Halliday CS, Lwin T, Nelson G, Westcott M (1983) J Electroanal Chem 159:267

    Article  CAS  Google Scholar 

  22. Baskaran I, Sankara Narayanan TSN, Stephen A (2006) Mater Chem Phys 99:117–126

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  24. Scharifker BR, Hills GJ (1983) Electrochim Acta 28:879–889

    Article  CAS  Google Scholar 

  25. Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Science Foundation of China for financially supporting this research under contract no. 50040005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqu Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Yang, D., Zhu, S. et al. Preparation, characterization, and electrochemical studies of sulfur-bearing nickel in an ammoniacal electrolyte: the influence of thiourea. J Solid State Electrochem 16, 3115–3122 (2012). https://doi.org/10.1007/s10008-012-1753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1753-0

Keywords

Navigation