Skip to main content
Log in

Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10−3 S cm−1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from −2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews—I. Elsevier, London

    Google Scholar 

  2. Gray FM (1991) Solid polymer electrolytes—fundamentals and technological applications. VCH, New York

    Google Scholar 

  3. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001

    Article  Google Scholar 

  4. Manualstephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polymer J 42:21–42

    Article  Google Scholar 

  5. Michot T, Nishimoto A, Watanabe M (2000) Electrochemical properties of polymer gel electrolytes based on poly (vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45:1347–1360

    Article  CAS  Google Scholar 

  6. Hashmi SA (2004) Supercapacitor: An emerging power source. Nat Acad Sci Lett 27:27–46

    Google Scholar 

  7. Sannier L, Bouchet R, Rosso M, Tarascon J-M (2006) Evaluation of GPE performances in lithium metal battery technology by means of simple polarization tests. J Power Sources 158:564–570

    Article  CAS  Google Scholar 

  8. Kumar B (2004) From colloidal to composite electrolytes: properties, peculiarities, and possibilities. J Power Sources 135:215–231

    Article  CAS  Google Scholar 

  9. Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190:563–572

    Article  CAS  Google Scholar 

  10. Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101–5108

    Article  CAS  Google Scholar 

  11. Adebahr J, Byrne N, Forsyth M, MacFarlane DR, Jacobson P (2003) Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochim Acta 48:2099–2103

    Article  CAS  Google Scholar 

  12. Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2009) 7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: a comparative study with variation of salt and plasticizer with filler. Electrochim Acta 54:1218–1227

    Article  CAS  Google Scholar 

  13. Ferrari S, Quatarone E, Mustarelli P, Magistris A, Fagnoni M, Protti S, Gerbaldi C, Spinella A (2010) Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195:559–566

    Article  CAS  Google Scholar 

  14. Pandey GP, Agrawal RC, Hashmi SA (2011) Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem. doi:10.1007/s10008-010-1240-4

  15. Maier J (1994) Defect chemistry at interfaces. Solid State Ionics 70–71:43–51

    Article  Google Scholar 

  16. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  17. Rand DAJ, Woods R, Dell RM (1998) Batteries for electric vehicles. Wiley, New York

    Google Scholar 

  18. Egashira M, Todo H, Yoshimoto N, Morita M (2008) Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J Power Sources 178:729–735

    Article  CAS  Google Scholar 

  19. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727

    Article  CAS  Google Scholar 

  20. Noto VD, Paolo D, Vittadello M, Dall’Igna R, Boella F (2003) Potentiometric sensors with liquid polymer electrolytes based on poly ethylene glycol 400, LiCl and δ-MgCl2. Electrochim Acta 48:2329–2342

    Article  Google Scholar 

  21. Vittadello M, Biscazzo S, Lavina S, Fauri M, Noto VD (2002) Vibrational studies of the ion–polymer interactions in α-hydro-ω-oligo (oxyethylene) hydroxy-poly [oligo (oxyethylene) oxydimethylsililene]/δ-MgCl2. Solid State Ionics 147:341–347

    Article  CAS  Google Scholar 

  22. Biscazzo S, Vittadello M, Lavina S, Noto VD (2002) Synthesis and structure of electrolytic complexes based on α-hydro-ω-oligo (oxyethylene) hydroxy-poly [oligo (oxyethylene) oxydimethylsililene] and δ-MgCl2. Solid State Ionics 147:377–382

    Article  CAS  Google Scholar 

  23. Noto VD, Vittadello M (2002) Mechanism of ionic conductivity in poly (ethylene glycol 400)/(MgCl2)x polymer electrolytes: studies based on electrical spectroscopy. Solid State Ionics 147:309–316

    Article  Google Scholar 

  24. Noto VD, Munchow V, Vittadello M, Collet JC, Lavina S (2002) Synthesis and characterization of lithium and magnesium complexes based on [EDTA][PEG400]2 and [EDTA]3[PEG400]7. Macromol Chem Phys 203:1211–1227

    Article  Google Scholar 

  25. Noto VD, Vittadello M, Pace G, Biscazzo S, Lavina S (2002) Synthesis and characterization of [PEG400-alt-DEOS]/(δ-MgCl2)0.2597 complex. Macromol Chem Phys 203:1201–1210

    Article  Google Scholar 

  26. Noto VD, Lavina S, Longo D, Vidali M (1998) A novel electrolytic complex based on δ-MgCl2 and poly(ethylene glycol) 400. Electrochim Acta 43:1225–1237

    Article  Google Scholar 

  27. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634

    Article  CAS  Google Scholar 

  28. Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181:416–423

    Article  CAS  Google Scholar 

  29. Kumar GG, Sampath S (2003) Electrochemical characterization of poly (vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160:289–300

    Article  CAS  Google Scholar 

  30. Kumar GG, Sampath S (2005) Electrochemical and spectroscopic investigations of a gel polymer electrolyte of poly (methylmethacrylate) and zinc triflate. Solid State Ionics 176:773–780

    Article  Google Scholar 

  31. Ye H, John Xu J (2007) Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J Power Sources 165:500–508

    Article  CAS  Google Scholar 

  32. Ikeda S, Mori Y, Furuhashi Y, Masuda H (1999) Multivalent cation conductive solid polymer electrolytes using photo-cross-linked polymers: II. magnesium and zinc trifluoromethanesulfonate systems. Solid State Ionics 121:329–333

    Article  CAS  Google Scholar 

  33. Chang W, Choi J-W, Im J-C, Lee JK (2010) Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. J Power Sources 195:320–326

    Article  CAS  Google Scholar 

  34. Wu C-G, Lu M-I, Tsai C-C, Chuang H-J (2006) PVdF-HFP/metal oxide nanocomposites: the matrices for high-conducting, low-leakage porous polymer electrolytes. J Power Sources 159:295–300

    Article  CAS  Google Scholar 

  35. Fan L, Dang Z, Wei G, Nan C-W, Li M (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes. Mater Sci Eng B 99:340–343

    Article  Google Scholar 

  36. Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK (2009) Carbon nanotube–zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. J Alloys and Compds 480:L17–L19

    Article  CAS  Google Scholar 

  37. Chandra A, Singh PK, Chandra S (2002) Semiconductor-dispersed polymer electrolyte composites. Solid State Ionics 154–155:15–20

    Article  Google Scholar 

  38. Kloster GM, Thomas JA, Brazis PW, Kannewurf CR, Shriver DF (1996) Synthesis, characterization, and transport properties of new mixed ionic−electronic conducting V2O5−polymer electrolyte xerogel nanocomposites. Chem Mater 8:2418–2420

    Article  CAS  Google Scholar 

  39. Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with NaPF6. Mater Sci Eng B 34:18–26

    Article  Google Scholar 

  40. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  41. Wang K, Lee H, Cooper R, Liang H (2009) Time-resolved, stress-induced, and anisotropic phase transformation of a piezoelectric polymer. Appl Phys A 95:435–441

    Article  CAS  Google Scholar 

  42. Simoes RD, Job AE, Chilanglia DL, Zucolotto V, Camargo-Filho JC, Alves N, Giacometti JA, Oliveira ON Jr, Constantino CJL (2005) Structural characterization of blends containing both PVDF and natural rubber latex. J Raman Spectrosc 36:1118–1124

    Article  CAS  Google Scholar 

  43. Nunes SC, de Zea BV, Ostrovskii D, Carlos LD (2006) FT-IR and Raman spectroscopic study of di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with Zn2+ ions. Vib Spectrosc 40:278–288

    Article  CAS  Google Scholar 

  44. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822

    Article  CAS  Google Scholar 

  45. Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  46. Fujinaga T, Sakamoto I (1976) Electrochemical studies of sulfonates in non-aqeous solvents. Part II. polarographic reductions of some alkaline earth and transition metal ions with sulfonate supporting electrolyte in N, N-Dimethylformamide and acetonitrile. J Electroanal Chem 73:235–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Department of Science & Technology, New Delhi, and University of Delhi (under the Scheme to Strengthen R&D Doctoral Research Programme providing funds to University faculty, 11-17 Research Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hashmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellam, Hashmi, S.A. Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem 16, 3105–3114 (2012). https://doi.org/10.1007/s10008-012-1733-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1733-4

Keywords

Navigation