Skip to main content
Log in

Electrochemical monitoring of photoelectrocatalytic degradation of rhodamine B using TiO2 thin film modified graphite electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A commercially available TiO2 powder (Degussa P25) has been used to prepare thin films on graphite plates. The photoelectrochemical degradation of rhodamine B was investigated using this photoelectrode. The effects of applied potential, pH, and initial rhodamine B concentration on the photoelectrocatalytic (PEC) degradation of rhodamine B using ultraviolet illuminated TiO2/graphite (TiO2/C) thin film electrode were examined and discussed. Also, direct photolysis, electrochemical oxidation, photocatalytic, and PEC degradation of rhodamine B were compared. Results show that the best responses for PEC are obtained at applied potential of 1.2 V vs. reference electrode, pH 4.0, and initial rhodamine B concentration of 4.2 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carey JH (1976) Bull Environ Contam Toxicol 16:663–667

    Article  Google Scholar 

  2. Aurian V (1988) Toxicol Environ Chem 16:89–109

    Article  Google Scholar 

  3. Li XZ, Li FB (2001) Environ Sci Technol 35:2381–2387

    Article  CAS  Google Scholar 

  4. Li FB, Li XZ, Hou MF (2004) Appl Catal B Environ 48:185–194

    Article  CAS  Google Scholar 

  5. Armon R, Weltch-Cohen G, Bettane P (2004) Wat Sci Technol 4:7–14

    CAS  Google Scholar 

  6. Lee JP, Kim HK, Park CR, Park G, Kwak HT, Koo SM, Sung MM (2003) J Phys Chem B 107:8997–9002

    Article  CAS  Google Scholar 

  7. Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Dyes Pigments 49:117–125

    Article  CAS  Google Scholar 

  8. Wang Y (2000) Water Res 34:990–994

    Article  CAS  Google Scholar 

  9. Leng WH, Zhang Z, Zhang JQ (2003) J Mol Catal A Chem 206:239–252

    Article  CAS  Google Scholar 

  10. Chen XB, Mao SS (2007) Chem Rev 107:2891–3041

    Article  CAS  Google Scholar 

  11. Mandal SS, Bhattacharyya AJ (2010) Talanta 82:876–884

    Article  CAS  Google Scholar 

  12. Choi W, Termin A, Haffmann MR (1994) J Phys Chem 98:13669–13679

    Article  Google Scholar 

  13. Kormann C, Bahnmann DW, Haffmann MR (1991) Environ Sci Technol 25:494–500

    Article  CAS  Google Scholar 

  14. Li MC, Shen JN (2006) J Solid State Electrochem 10:980–986

    Article  CAS  Google Scholar 

  15. Qian X, Qin D, Bai Y, Li T, Tang X, Wang E, Dong S (2001) J Solid State Electrochem 5:562–567

    Article  CAS  Google Scholar 

  16. Li XZ, Li FB, Fan CM, Sun YP (2002) Water Res 36:2215–2224

    Article  CAS  Google Scholar 

  17. Jiang D, Zhao H, Zhang S, John R, Will GD (2003) J Photochem Photobiol A Chem 156:201–206

    Article  CAS  Google Scholar 

  18. Zhang Z, Yuan Y, Shi G, Fang Y, Liang L, Ding H, Jin L (2007) Environ Sci Technol 41:6259–6263

    Article  CAS  Google Scholar 

  19. Jorge SMA, Sene JJ, Florentino AO (2005) J Photochem Photobiol A Chem 174:71

    Article  CAS  Google Scholar 

  20. Zhou M, Ma X (2009) Electrochem Commun 11:921–924

    Article  CAS  Google Scholar 

  21. Diang D, Zhao H, Jia Z, Cao J, John R (2001) J Photochem Photobiol A Chem 144:197

    Article  Google Scholar 

  22. Soares ET, Lansarin MA, Moro CC (2007) Braz J Chem Eng 24:29–36

    Article  CAS  Google Scholar 

  23. Shang J, Zhang Y, Zhu T, Wang Q, Song H (2011) Appl Catal B Environ 102:464–469

    Article  CAS  Google Scholar 

  24. Li J, Li L, Zheng L, Xian Y, Jin L (2006) Electrochim Acta 51:4942–4949

    Article  CAS  Google Scholar 

  25. Xie YB, Li XZ (2006) Mater Chem Phys 95:39–50

    Article  CAS  Google Scholar 

  26. Peralta-Hernandez JM, Meas-Vong Y, Rodriguez FJ, Chapman TW, Maldonado MI, Godinez LA (2006) Water Res 40:1754–1762

    Article  CAS  Google Scholar 

  27. Kim DH, Anderson MA (1996) J Photochem Photobiol A Chem 94:221–229

    Article  CAS  Google Scholar 

  28. Guo Y, Zhao J, Zhang H, Yang S, Qi J, Wang Z, Xu H (2005) Dyes Pigments 66:123–128

    Article  CAS  Google Scholar 

  29. Lu MC, Roam GD, Chen JN, Huang CP (1996) Water Res 30:1670–1676

    Google Scholar 

  30. Leng WH, Liu H, Cheng SA, Zhang JQ, Cao CN (2000) J Photochem Photobiol A Chem 131:125–132

    Article  Google Scholar 

  31. Kim DH, Anderson MA (1994) Environ Sci Technol 28:479–483

    Article  CAS  Google Scholar 

  32. Hitchman ML, Tian F (2002) J Electroanal Chem 538–539:165–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ojani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojani, R., Raoof, JB. & Zarei, E. Electrochemical monitoring of photoelectrocatalytic degradation of rhodamine B using TiO2 thin film modified graphite electrode. J Solid State Electrochem 16, 2143–2149 (2012). https://doi.org/10.1007/s10008-011-1634-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1634-y

Keywords

Navigation