Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting

Abstract

Recently unveiled ‘alkali metal fluorosulphate (AMSO4F)’ class of compounds offers promising electrochemical and transport properties. Registering conductivity value as high as 10−7 S cm−1 in NaMSO4F phases, we explored the fluorosulphate group to design novel compounds with high Li-ion conductivity suitable for solid electrolyte applications. In the process, we produced sillimanite-structured LiZnSO4F by low temperature synthesis (T ≤ 300 °C). Examining this phase, we accidentally discovered the possibility of improving the ionic conductivity of poor conductors by forming a monolayer of ionic liquid at their particle surface. This phenomenon was studied by solid-state NMR, XPS and AC impedance spectroscopy techniques. Further, similar trends were noticed in other fluorosulphate materials like tavorite LiCoSO4F and triplite LiMnSO4F. With this study, we propose ‘ionic liquid grafting’ as an interfacial route to enable good Li-ion conductivity in otherwise poor conducting ceramics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Mizushima K, Jones PC, Wiseman PC, Goodenough JB (1980) Mater Res Bull 15:783–789

    Article  CAS  Google Scholar 

  2. 2.

    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  3. 3.

    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156–160

    Article  CAS  Google Scholar 

  4. 4.

    Yamada A, Iwane N, Harada Y, Nishimura S, Koyama Y, Tanaka I (2010) Adv Mater 22:3583–3587

    Article  CAS  Google Scholar 

  5. 5.

    Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Electrochem Solid-State Lett 13:A43–A47

    Article  CAS  Google Scholar 

  6. 6.

    Nishimura S, Nakamura M, Natsui R, Yamada A (2010) J Am Chem Soc 132:13596–13597

    Article  CAS  Google Scholar 

  7. 7.

    Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) Nat Mater 9:68–74

    Article  CAS  Google Scholar 

  8. 8.

    Barpanda P, Recham N, Chotard JN, Djellab K, Armand M, Tarascon JM (2010) J Mater Chem 20:1659–1668

    Article  CAS  Google Scholar 

  9. 9.

    Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Inorg Chem 49:7401–7413

    Article  CAS  Google Scholar 

  10. 10.

    Sorokin NI, Sobolev BP (2007) Crystallogr Rep 52:842–863

    Article  CAS  Google Scholar 

  11. 11.

    Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2011) Angew Chem Int Ed 50:2526–2531

    Article  CAS  Google Scholar 

  12. 12.

    Armand M, Gauthier M, Magnan JF, Ravet N (2004) US Patent 033:360

    Google Scholar 

  13. 13.

    Rodriguez-Carvajal J (2001) CPD Newslett 26:12–19

    Google Scholar 

  14. 14.

    Momma K, Izumi F (2008) J Appl Crystallogr 41:653–658

    Article  CAS  Google Scholar 

  15. 15.

    Bielecki A, Burum DP (1995) J Magn Reson A 116:215–220

    Article  CAS  Google Scholar 

  16. 16.

    Barpanda P, Ati M, Melot B, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr S, Jumas JC, Tarascon JM (2011) Nat Mater 10:772–779

    Article  CAS  Google Scholar 

  17. 17.

    Kang B, Ceder G (2009) Nature 458:190–193

    Article  CAS  Google Scholar 

  18. 18.

    Sata N, Eberman K, Ebert K, Maier J (2000) Nature 408:946–949

    Article  CAS  Google Scholar 

  19. 19.

    Schaefer JL, Moganty SS, Archer LA (2011) J Mater Chem 21:10094–10101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The scientific assistance of Dominique Massiot (Orleans) and Danielle Gonbeau (Pau) is acknowledged. We thank ALISTORE-ERI for the financial support. The first author (PB) is grateful to the Japan Society for the Promotion of Science for a JSPS Fellowship at the University of Tokyo.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prabeer Barpanda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barpanda, P., Dedryvère, R., Deschamps, M. et al. Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting. J Solid State Electrochem 16, 1743–1751 (2012). https://doi.org/10.1007/s10008-011-1598-y

Download citation

Keywords

  • Conductivity
  • Fluorosulphates
  • Ionic liquid grafting
  • Solid electrolyte