Skip to main content
Log in

Effects of mixed conductivity of nanocomposite membranes MF-4SC/PANI

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Changes in the conducting and hydrophilic properties of composites MF-4SC/polyaniline (PAni) under conditions of prolonged synthesis have been studied. A maximum of PAni content of about 0.20 by weight, which can be incorporated into the matrix of MF-4SC under these conditions of synthesis, is determined. Percolation behavior of electrical conductivity of the composites after drying was observed. The conductivity of PAni salt inside MF-4SC was estimated within the frames of the percolation model. Using the fibrous cluster model of the membrane and the conductivity data on individual PAni, theoretical assessment of the electrical conductivity of nanocomposite MF-4SC/PAni has been performed. Reasons for a significant reduction in the conductivity of PAni during its integration into the structure of the initial matrix were discussed. A scale of membrane conductivity, reflecting changes in the electrical conductivity of composites at various stages of synthesis, was drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inzelt G (2011) Rise and rise of conducting polymers. J Solid State Electrochem 15:1711–1718

    Article  CAS  Google Scholar 

  2. Tan S, Belanger D (2005) J Phys Chem B 109:23480–23490

    Article  CAS  Google Scholar 

  3. Berezina NP, Kubaisy AA-R, Timofeev SV, Karpenko LV (2007) J Solid State Electrochem 11:378–389

    Article  CAS  Google Scholar 

  4. Berezina NP, Kononenko NA, Sytcheva AA-R, Loza NV, Shkirskaya SA, Hegman N, Pungor A (2009) Electrochim Acta 54:2342–2352

    Article  CAS  Google Scholar 

  5. Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Prog Polym Sci 28:1701–1753

    Article  CAS  Google Scholar 

  6. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  7. Compan V, Molla S, Sytcheva AA-R, Berezina NP, Suarez K, Solorza O, Riande E (2009) ECS Trans 25:645–658

    CAS  Google Scholar 

  8. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  9. Protasov KV, Shkirskaya SA, Berezina NP, Zabolotskii VI (2010) Russ J Electrochem 46:1131–1140

    Article  CAS  Google Scholar 

  10. Sapurina IYU, Kompan ME, Malyshkin VV, Rosanov VV, Stejskal J (2009) Russ J Electrochem 45:697–706

    Article  CAS  Google Scholar 

  11. Berezina NP, Kononenko NA, Dyomina OA, Gnusin NP (2008) Adv Colloid Interf Sci 139:3–28

    Article  CAS  Google Scholar 

  12. Ogumi Z, Toyama K, Takehara Z (1992) J Membr Sci 65:205–212

    Article  CAS  Google Scholar 

  13. Sycheva AA-R, Falina IV, Berezina NP (2009) Russ J Electrochem 45:108–115

    Article  CAS  Google Scholar 

  14. Nekrasov AA, Ivanov VF, Vannikov AV (2001) Electrochim Acta 46:3301–3307

    Article  CAS  Google Scholar 

  15. Berezina NP, Karpenko LV (2000) Colloid J 62:749–757

    Article  Google Scholar 

  16. Aoki K, Kawaguchi F, Nishiumi T, Chen J (2008) Electrochim Acta 53:3798–3802

    Article  CAS  Google Scholar 

  17. Jang J, Bae J, Lee K (2005) Polymer 46:3677–3684

    Article  CAS  Google Scholar 

  18. Kirkpatrick S (1971) Phys Rev Lett 27:1722–1725

    Article  Google Scholar 

  19. McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187–2203

    Article  CAS  Google Scholar 

  20. Stejskal J (2002) Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  21. Berezina NP, Chernyaeva MA, Kononenko NA, Dolgopolov SV (2011) Membr Membr Technol 1:37–45, in Russian

    Google Scholar 

  22. Scher H, Zallen R (1970) J Chem Phys 53:3759–3761

    Article  CAS  Google Scholar 

  23. Hsu C-H (1991) Synth Met 41–43:671–674

    Article  Google Scholar 

  24. Jackowska K, Bieguński AT, Tagowska M (2008) J Solid State Electrochem 12:437–443

    Article  CAS  Google Scholar 

  25. Falina IV, Berezina NP (2010) Polymer Sci B 52:244–251

    Article  Google Scholar 

  26. Huanga QM, Zhanga QL, Huanga HL, Li WS, Huanga YJ, Luoc JL (2008) J Power Sources 184:338–343

    Article  Google Scholar 

  27. Gnusin NP, Berezina NP, Kononenko NA, Dyomina OA (2004) J Membr Sci 243:301–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Russian Foundation for Basic Research (grant no. 10-08-00758-a). Also, this work was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with support by the European Union and the European Social Fund. The authors would like to express their gratitude to Dr. S.V. Timofeev (Plastpolymer Plc., St. Petersburg, Russia) for the MF-4SC membrane samples supplied and to Professor V.I. Roldugin of the Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninel P. Berezina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falina, I.V., Berezina, N.P., Sytcheva, A.AR. et al. Effects of mixed conductivity of nanocomposite membranes MF-4SC/PANI. J Solid State Electrochem 16, 1983–1991 (2012). https://doi.org/10.1007/s10008-011-1589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1589-z

Keywords

Navigation