Skip to main content

Advertisement

Log in

LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sensitive determination of paracetamol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor based on LaNi0.5Ti0.5O3/CoFe2O4 nanoparticle-modified electrode (LNT–CFO/GCE) for sensitive determination of paracetamol (PAR) was presented. Experimental conditions such as the concentration of LNT–CFO, pH value, and applied potential were investigated. Under the optimum conditions, the electrochemical performances of LNT–CFO/GCE have been researched on the oxidation of PAR. The electrochemical behaviors of PAR on LNT–CFO/GCE were investigated by cyclic voltammetry. The results showed that LNT–CFO/GCE exhibited excellent promotion to the oxidation of PAR. The over-potential of PAR decreased significantly on the modified electrode compared with that on bare GCE. Furthermore, the sensor exhibits good reproducibility, stability, and selectivity in PAR determination. Linear response was obtained in the range of 0.5 to 901 μM with a detection limit of 0.19 μM for PAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Willner I, Willner B, Katz E (2007) Biomolecule–nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70:2–11

    Article  CAS  Google Scholar 

  2. Zhang JD, Oyama M (2005) Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization: direct electrochemistry and catalysis to hydrogen peroxide. J Electroanal Chem 577:273–279

    Article  CAS  Google Scholar 

  3. Feng WY, Xu XH, Wang H, Zhou JT, Yang XN, Zhang Y, Shang SX, Huang BB (2004) Photocatalytic property of perovskite bismuth titanate. Appl Catal B: Environ 52:109–116

    Article  Google Scholar 

  4. Rached H, Rached D, Rabah M, Khenata R, Reshak A (2010) Full-potential calculation of the structural, elastic, electronic and magnetic properties of XFeO3 (X ¼Sr and Ba) perovskite. Physica B 405:3515–3519

    Article  CAS  Google Scholar 

  5. Li GB, Liu SX, Liao FH, Tian SJ, Jing XP, Lin JH, Uesu Y, Kohn K, Saitoh K, Terauchi M, Di N, Cheng ZH (2004) The structural and electric properties of the perovskite system BaTiO3–Ba(Fe1/2Ta1/2)O3. J Solid State Chem 177:1695–1703

    Article  CAS  Google Scholar 

  6. Liao KF, Chang YS, Chai YL, Tsai YY, Chen HL (2010) Structure and dielectric properties of sodium-doped Ba(FeNb)0.5O3. Mater Sci Eng B 172:300–304

    Article  CAS  Google Scholar 

  7. Kim CY, Niihara OSK (2010) Optical, mechanical, and dielectric properties of Bi1/2Na1/2TiO3 thin film synthesized by sol–gel method. J Sol-Gel Sci Technol 55:306–310

    Article  CAS  Google Scholar 

  8. Mazaheri M, Akhavan M (2010) Electrical behavior of nano-polycrystalline (La1/y K y )0.7Ba0.3MnO3 manganites. J Magn Magn Mater 322:3255–3261

    Article  CAS  Google Scholar 

  9. Bai SL, Luo RX, Shi BJ, Liu ZY, Li DQ (2010) Gas sensing property of MgO modified LaFeO3 nanocomposites. IEEE Sens J 10:1633–1634

    Article  CAS  Google Scholar 

  10. Yoon KJ, Cramer CN, Stevenson JW, Marina OA (2010) Advanced ceramic interconnect material for solid oxide fuel cells: electrical and thermal properties of calcium- and nickel-doped yttrium chromites. J Power Sources 195:7587–7593

    Article  CAS  Google Scholar 

  11. Ding XF, Kong X, Jiang JG, Cui C, Guo XX (2010) Characterization and V electrochemical performance of (Ba0.6Sr0.4)1−x La x Co0.6Fe0.4O3−δ (x = 0, 0.1) cathode for intermediate temperature solid oxide fuel cells. Mater Res Bull 1272:1271–1277

    Article  Google Scholar 

  12. Zhao F, Wang SW, Kyle B, Chen FL (2010) Layered perovskite PrBa0.5Sr0.5Co2O5+δ as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. J Power Sources 1955:468–5473

    Google Scholar 

  13. Ding HP, Xue XJ (2010) Novel layered perovskite GdBaCoFeO5Dd as a potential cathode for proton-conducting solid oxide fuel cells international. J Hydrogen Energy 35:4311–4315

    Article  CAS  Google Scholar 

  14. Ding HP, Xue XJ (2010) Cobalt-free layered perovskite GdBaFe2O5+x as a novel cathode for intermediate temperature solid oxide fuel cells. J Power Sources 195:4718–4721

    Article  CAS  Google Scholar 

  15. Smith EA, Lokuhewa IN, Misture ST, Edwards DD (2010) p-type thermoelectric properties of the oxygen-deficient perovskite Ca2Fe2O5 in the brown millerite structure. J Solid State Chem 183:1670–1677

    Article  Google Scholar 

  16. Wang Y, Sui Y, Wang XJ, Su WH, Cao WW, Liu XY (2010) Thermoelectric response driven by spin-state transition in La1−x Ce x CoO3 perovskites. ACS Appl mater interfaces 8:2213–2217

    Article  Google Scholar 

  17. Chen XH, Hu JQ, Chen ZW, Feng XM, Li AQ (2009) Nanoplated bismuth titanate sub-microspheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis. Biosens Bioelectron 24:3448–3454

    Article  CAS  Google Scholar 

  18. Wang GL, Bao YY, Tian YM, Xia J, Cao DX (2010) Electrocatalytic activity of perovskite La1−x Sr x MnO3 towards hydrogen peroxide reduction in alkaline medium. J Power Sources 195:6463–6467

    Article  CAS  Google Scholar 

  19. Dam TVA, Olthuis W, Bergveld P (2004) Sensing properties of perovskite oxide La0.5Sr0.5CoO3−δ obtained by using pulsed laser deposition. Sens Actuators B 103:165–168

    Article  Google Scholar 

  20. Safavi A, Maleki N, Moradlou O (2008) A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode. Electroanalysis 19:2158–2162

    Article  Google Scholar 

  21. Goyal RN, Gupta VK, Oyama M, Bachheti N (2005) Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem Commun 7:803–807

    Article  CAS  Google Scholar 

  22. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chimi Acta 618:54–60

    Article  CAS  Google Scholar 

  23. Lourenc BC, Medeirosb RA, Rocha RCF, Mazoa LH, Fatibello OF (2009) Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78:748–752

    Article  Google Scholar 

  24. Lohmann W, Karst U (2006) Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem 386:1701–1708

    Article  CAS  Google Scholar 

  25. Knochen M, Giglio J, Reis BF (2003) Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions. J Pharm Biomed Anal 33:191–197

    Article  CAS  Google Scholar 

  26. Easwaramoorthy D, Yu YC, Huang HJ (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chimi Acta 439:95–100

    Article  CAS  Google Scholar 

  27. Reddy TM, Balaji K, Reddy SJ (2007) Voltammetric behavior of some fluorinated quinolone antibacterial agents and their differential pulse voltammetric determination in drug formulations and urine samples using ab-cyclodextrin-modified carbon-paste electrode. J Anal Chem 2:168–175

    Article  Google Scholar 

  28. Babaei A, Afrasiabi M, Babazadeh M (2010) A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis 15:1743–1749

    Article  Google Scholar 

  29. Li Y, Umasankar Y, Chen SM (2009) Polyaniline and poly(flavin adenine dinucleotide) doped multi-walled carbon nanotubes for p-acetamidophenol sensor. Talanta 79:486–492

    Article  CAS  Google Scholar 

  30. Wang SF, Xie F, Hu RF (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens Actuators B 123:495–500

    Article  Google Scholar 

  31. Kang XH, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  32. Li F, Liu JJ, Evans DG, Duan X (2004) Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem Mater 16:1597–1602

    Article  CAS  Google Scholar 

  33. Wang YL, Xu YH, Luo LQ, Ding YP, Liu XJ (2010) Preparation of perovskite-type composite oxide LaNi0.5Ti0.5O3–NiFe2O4 and its application in glucose biosensor. J Electroanal Chem 642:35–40

    Article  CAS  Google Scholar 

  34. Nematollahi D, Shayani-Jama H, Alimoradi M, Niroomand S (2009) Electrochemical oxidation of acetaminophen in aqueous solutions: kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochimi Acta 54:7407–7415

    Article  CAS  Google Scholar 

  35. Falcon H, Carbonio RE, Fierro JLG (2001) Correlation of oxidation states in LaFe x Ni1−x O3+δ oxides with catalytic activity for H2O2 decomposition. J Catalysis 203:264–272

    Article  CAS  Google Scholar 

  36. Fabiana SF, Christopher MA, Brett LA (2007) Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations. J Pharm Biomed Anal 43:1622–1627

    Article  Google Scholar 

  37. Liu XJ, Luo LQ, Ding YP, Xu YH (2011) Amperometric biosensors based on alumina nanoparticles–chitosan–horseradish peroxidase nanobiocomposites for the determination of phenolic compounds. Analyst 136:696–701

    Article  CAS  Google Scholar 

  38. Shan D, Wang SX, He YY, Xue HG (2008) Amperometric glucose biosensor based on in situ electropolymerized polyaniline/poly(acrylonitrile-co-acrylic acid) composite film. Mater Sci Eng C 28:213–217

    Article  CAS  Google Scholar 

  39. Maria DPTS, Anderson S, Marcos RVL, Auro AT, Lauro TK (2008) Construction and application of an electrochemical sensor for paracetamol determination based on iron tetrapyridinoporphyrazine as a biomimetic catalyst of P450 enzyme. J Braz Chem Soc 19:734–743

    Article  Google Scholar 

  40. Mariana CQO, Marcos RVL, Auro AT, Maria DPTS (2010) Flow injection analysis of paracetamol using a biomimetic sensor as a sensitive and selective amperometric detector. Anal Methods 2:507–512

    Article  Google Scholar 

  41. Zhang Y, Luo LQ, Ding YP, Liu X, Qian ZY (2010) A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is supported by the National Natural Science Foundation of China (No. 20975066, 41140031, 20975066) and the Nano-Foundation of Science and Techniques Commission of Shanghai Municipality (No.0952 nm01500), Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102), and the Ph.D. Innovation Foundation of Shanghai University (No. SHUCX091030). We are grateful to the assistance of Dr. Galina Tsirlina in analysis of XRD and mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. S1

(PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, D., Xu, Y., Luo, L. et al. LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sensitive determination of paracetamol. J Solid State Electrochem 16, 1635–1642 (2012). https://doi.org/10.1007/s10008-011-1568-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1568-4

Keywords

Navigation