Skip to main content
Log in

Improved sintering and electrical properties of La-doped CeO2 buffer layer for intermediate temperature solid oxide fuel cells using doped LaGaO3 film prepared by screen printing process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Effects of a sintering agent for La-doped ceria (LDC) as a buffer layer to prevent a chemical reaction between Ni in anode and Sr- and Mg-doped lanthanum gallate (LSGM) electrolyte during sintering were studied for improving sintering and electrical properties. Electrochemical performance of anode-supported solid oxide fuel cells (SOFCs) using LDC and LSGM films prepared by screen printing and co-sintering (1,350 °C) was also investigated. The prepared cell with dense LDC (ca. 17 μm) and LSGM electrolyte (ca. 60 μm) films showed an open circuit voltage close to the theoretical value of 1.10 V and a high maximum power density (0.831 W cm–2) at 700 °C. The addition of 1 wt.% LSGM to porous LDC buffer layer was effective for improving the sintering density and electrical conductivity, resulting in the high power density due to the decreased internal resistance loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Minh NQ (1993) J Am Ceram Soc 76:563–588

    Article  CAS  Google Scholar 

  2. Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) Science 288:2031–2033

    Article  CAS  Google Scholar 

  3. Shao Z, Kwak C, Haile SM (2004) Solid State Ionics 175:39–46

    Article  CAS  Google Scholar 

  4. Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801–3803

    Article  CAS  Google Scholar 

  5. Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663–672

    CAS  Google Scholar 

  6. Huang K, Wan JH, Goodenough JB (2001) J Electrochem Soc 148:A788–A794

    Article  CAS  Google Scholar 

  7. Wan JH, Yan JQ, Goodenough JB (2005) J Electrochem Soc 152:A1511–A1515

    Article  CAS  Google Scholar 

  8. Yan JW, Lu ZG, Jiang Y, Dong YL, Yu CY, Li WZ (2002) J Electrochem Soc 149:A1132–A1135

    Article  CAS  Google Scholar 

  9. Bi ZH, Yi BL, Wang ZW, Dong YL, Wu HJ, She YC, Cheng MJ (2004) Electrochem Solid State Lett 7:A105–A107

    Article  CAS  Google Scholar 

  10. Yan JW, Matsumoto H, Enoki M, Ishihara T (2005) Electrochem Solid State Lett 8:A389–A391

    Article  CAS  Google Scholar 

  11. Lin YB, Barnett SA (2006) Electrochem Solid State Lett 9:A285–A288

    Article  CAS  Google Scholar 

  12. Ishihara T, Yan JW, Shinagawa M, Matsumoto H (2006) Electrochim Acta 52:1645–1650

    Article  CAS  Google Scholar 

  13. He T, He Q, Pei L, Ji Y (2006) J Am Ceram Soc 89:2664–2667

    Article  CAS  Google Scholar 

  14. Lee DY, Han JH, Kim EG, Song RH, Shin DR (2008) J Power Sourc 185:207–211

    Article  CAS  Google Scholar 

  15. Guo W, Liu J, Zhang Y (2008) Electrochim Acta 53:4420–4427

    Article  CAS  Google Scholar 

  16. Bozza F, Polini R, Traversa E (2009) Electrochem Commun 11:1680–1683

    Article  CAS  Google Scholar 

  17. Ju YW, Eto H, Inagaki T, Ida S, Ishihara T (2010) J Power Sourc 195:6294–6300

    Article  CAS  Google Scholar 

  18. Ishihara T, Eto H, Yan JW (2011) Int J Hydrogen Energ 36:1862–1867

    Article  CAS  Google Scholar 

  19. Huang KQ, Feng M, Goodenough JB, Milliken C (1997) J Electrochem Soc 144:3620–3624

    Article  CAS  Google Scholar 

  20. Hrovat M, Ahmad-Khanlou A, Samardzija Z, Holc J (1999) Mater Res Bull 34:2027–2034

    Article  CAS  Google Scholar 

  21. Singman D (1966) J Electrochem Soc 113:502–504

    Article  CAS  Google Scholar 

  22. Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T (2001) Solid State Ionics 140:191–199

    Article  CAS  Google Scholar 

  23. Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002) Solid State Ionics 154–155:461–466

    Article  Google Scholar 

  24. Pérez-Coll D, Marrero-Lopez D, Núñez P, Piñol S, Frade JR (2006) Electrochim Acta 51:6463–6469

    Article  Google Scholar 

  25. Pikalova EY, Murashkina AA, Maragou VI, Demin AK, Strekalovsky VN, Tsiakaras PE (2011) Int J Hydrogen Energ 36:6175–6183

    Article  CAS  Google Scholar 

  26. Kleinlogel C, Gauckler LJ (2000) Solid State Ionics 135:567–573

    Article  CAS  Google Scholar 

  27. Kleinlogel C, Gauckler LJ (2001) Adv Mater 13:1081–1085

    Article  CAS  Google Scholar 

  28. Zhang TS, Kong LB, Zeng ZQ, Huang HT, Hing P, Xia ZT, Kilner J (2003) J Solid State Electrochem 7:348–354

    CAS  Google Scholar 

  29. Zhang TS, Ma J, Chan SH, Kilner JA (2005) Solid State Ionics 176:377–384

    Article  CAS  Google Scholar 

  30. Fagg DP, Kharton VV, Frade JR (2004) J Solid State Electrochem 8:618–625

    Article  CAS  Google Scholar 

  31. Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Solid State Ionics 168:187–195

    Article  CAS  Google Scholar 

  32. Pérez-Coll D, Núñez P, Abrantes JCC, Fagg DP, Kharton VV, Frade JR (2005) Solid State Ionics 176:2799–2805

    Article  Google Scholar 

  33. Bronin DI, Kuzin BL, Yaroslavtsev IY, Bogdanovich NM (2006) J Solid State Electrochem 10:651–658

    Article  CAS  Google Scholar 

  34. Bi ZH, Cheng MJ, Dong YL, Wu HJ, She YC, Yi BL (2005) Solid State Ionics 176:655–661

    Article  CAS  Google Scholar 

  35. Polini R, Pamio A, Traversa E (2004) J Eur Ceram Soc 24:1365–1370

    Article  CAS  Google Scholar 

  36. Majewski P, Rozumek M, Schluckwerder H, Aldinger F (2001) J Am Ceram Soc 84:1093–1096

    Article  CAS  Google Scholar 

  37. Rozumek M, Majewski P, Sauter L, Aldinger F (2003) J Am Ceram Soc 86:1940–1946

    Article  CAS  Google Scholar 

  38. Datta P, Majewski P, Aldinger F (2007) Mater Chem Phys 102:240–244

    Article  CAS  Google Scholar 

  39. Pérez-Coll D, Sánchez-López E, Mather GC (2010) Solid State Ionics 181:1033–1042

    Article  Google Scholar 

  40. Ishihara T, Shibayama T, Nishiguchi H, Takita Y (2001) J Mater Sci 36:1125–1131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Eun Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, JE., Inagaki, T., Ida, S. et al. Improved sintering and electrical properties of La-doped CeO2 buffer layer for intermediate temperature solid oxide fuel cells using doped LaGaO3 film prepared by screen printing process. J Solid State Electrochem 16, 1493–1502 (2012). https://doi.org/10.1007/s10008-011-1548-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1548-8

Keywords

Navigation