Skip to main content
Log in

Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, electrophoretic deposition (EPD) was employed to fabricate multi-wall carbon nanotube (MWCNT) counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Firstly, raw MWCNTs were functionalized by means of an acid mixture solution and then subjected to EPD. The results obtained from Raman spectroscopy, Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and cyclic voltammogram demonstrated that the defects and open ends on the MWCNTs can be obtained via chemical functionalization and thus facilitate the enhancement in the electrocatalytic activity for I 3 reduction of MWCNT CEs. In addition to optimizing chemical functionalization of MWCNTs surface, the optimal thickness of MWCNT CEs prepared by EPD was also investigated. Additionally, consecutive cyclic voltammetric tests demonstrated that the MWCNT CE fabricated by EPD possessed excellent electrochemical stability. In comparison with MWCNT CEs fabricated by tape-casting approach, MWCNT CEs prepared by EPD presented a superior adhesion between MWCNT deposits and conducting glass substrates. Therefore, MWCNT CEs fabricated by EPD can be of great potential for use in low-cost plastic DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grätzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  2. Lin CY, Lin JY, Lan JL, Wei TC, Wan CC (2010) Electrochem Solid State Lett 13:D77–D79

    Article  CAS  Google Scholar 

  3. Lin CY, Lin JY, Wan CC, Wei TC (2011) Electrochim Acta 56:1941–1946

    Article  CAS  Google Scholar 

  4. Kay A, Grätzel M (1996) Sol Energy Mater Sol Cells 44:99–117

    Article  CAS  Google Scholar 

  5. Suzuki K, Yamamoto M, Kumagai M, Yanagida S (2003) Chem Lett 32:28–29

    Article  CAS  Google Scholar 

  6. Ramasamy E, Lee WJ, Lee DY, Song JS (2008) Electrochem Commun 10:1087–1089

    Article  CAS  Google Scholar 

  7. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Grätzel M (2006) J Electrochem Soc 153:A2255–A2261

    Article  CAS  Google Scholar 

  8. Lee WJ, Ramasamy E, Lee DY, Song JS (2009) Appl Mater Interfaces 1:1145–1149

    Article  CAS  Google Scholar 

  9. Denaro T, Baglio V, Girolamo M, Antonucci V, Arico AS, Matteucci F, Ornelas R (2009) J Appl Electrochem 39:2173–2179

    Article  CAS  Google Scholar 

  10. Choi HJ, Shin JE, Lee WG, Park NG, Kim KK, Hong SC (2010) Current Appl Phys 10:S165–S167

    Article  Google Scholar 

  11. Nam JG, Park YJ, Kim BS, Lee JS (2010) Scripta Materialia 62:148–150

    Article  CAS  Google Scholar 

  12. Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S (2004) J Photochem Photobiol A Chem 164:153–157

    Article  CAS  Google Scholar 

  13. Chen JG, Wei HY, Ho KC (2007) Sol Energy Mater Sol Cells 91:1472–1477

    Article  CAS  Google Scholar 

  14. Murakami TN, Grätzel M (2008) Inorg Chim Acta 361:572–580

    Article  CAS  Google Scholar 

  15. Wu JH, Li QH, Lan Z, Li PJ, Lin JM, Hao SC (2008) J Power Sources 181:172–176

    Article  CAS  Google Scholar 

  16. Wang M, Anghel AM, Marsan B, Ha NC, Pootrakulchote N, Zakeeruddin SM, Grätzel M (2009) J Am Chem Soc 131:15976–15977

    Article  CAS  Google Scholar 

  17. Lin JY, Laio JH, Wei TC (2011) Electrochem Solid-State Lett 14:D41–D44

    Article  CAS  Google Scholar 

  18. Lin JY, Laio JH, Hung ZY (2011) Electrochem Commun 13:977–980

    Article  CAS  Google Scholar 

  19. Lin JY, Laio JH, Chou SW (2011) Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim Acta. doi:10.1016/j.electacta.2011.07.080

  20. Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Nano Lett 1:87–91

    Article  CAS  Google Scholar 

  21. Banks CE, Compton RG (2006) Analyst 131:15–21

    Article  CAS  Google Scholar 

  22. Mei X, Cho SJ, Fan B, Ouyang J (2010) Nanotechnology 21:395202

    Article  Google Scholar 

  23. Jhong HR, Wong DS, Wan CC, Wang YY, Wei TC (2009) Electrochem Commun 11:209–211

    Article  CAS  Google Scholar 

  24. Chiang YC, Lin WH, Chang YC (2011) Appl Sur Sci 257:2401–2410

    Article  CAS  Google Scholar 

  25. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Chem Commun 7:829–841

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the National Science Council in Taiwan for its financial support under Contract No. NSC-100-2221-E-036-022. We also express our thanks to Dr. Wei in Tripod Technology Corporation for his helpful discussion and partly material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Yu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JY., Lien, CH. & Chou, SW. Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J Solid State Electrochem 16, 1415–1421 (2012). https://doi.org/10.1007/s10008-011-1541-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1541-2

Keywords

Navigation