Skip to main content

Advertisement

Log in

Significantly enhanced rate capability in supercapacitors using carbide-derived carbons electrode with superior microstructure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous carbide-derived carbons (CDC) with hierarchical pore structure were fabricated by chlorine etching of mesoporous titanium carbides. Their capacitive behaviors for electrochemical capacitor were investigated in comparison to those of purely microporous CDC. The as-prepared mesoporous CDC exhibited not only uniform micropores formed by leaching out titanium atoms but a 3-D mesoporous network inherited from their parent carbides. These mesoporous CDC could deliver a high specific capacitance of 120 F g−1 in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate. Moreover, they owned excellent frequency response and superior rate capability with capacitance retention ratio of 91% at current density of 10 A g−1. A high energy density of 16.3 Wh kg−1 was obtained even though power density was raised up to 4,300 W kg−1. The distinctive capacitive performance of mesoporous CDC would be attributed to their superior microstructure, in which the uniform micropores contributed to high charge storage while the 3-D mesoporous network and nanometer-scaled dimension of particles facilitated ions transfer as well as shortened electrolyte diffusion distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum, New York

    Google Scholar 

  2. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  3. Service RF (2006) Science 313:902

    Article  CAS  Google Scholar 

  4. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  7. Huang JS, Sumpter BG, Meunier V (2008) Angew Chem Int Ed 47:520–524

    Article  CAS  Google Scholar 

  8. Huang J, Sumpter BG, Meunier V (2008) Chem Eur J 14:6614–6626

    Article  CAS  Google Scholar 

  9. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2008) Angew Chem Int Ed 47:3392–3395

    Article  CAS  Google Scholar 

  10. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) J Electrochem Soc 147:2486–2493

    Article  CAS  Google Scholar 

  11. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:373–376

    Article  CAS  Google Scholar 

  12. Lin R, Taberna PL, Chmiola J, Guay D, Gogotsi Y, Simon P (2009) J Electrochem Soc 156:A7–A12

    Article  CAS  Google Scholar 

  13. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  14. Eikerling M, Kornyshev AA, Lust E (2005) J Electrochem Soc 152:E24–E33

    Article  CAS  Google Scholar 

  15. Mysyk R, Raymundo-Pinero E, Pernak J, Beguin F (2009) J Phys Chem C 113:13443–13449

    Article  CAS  Google Scholar 

  16. Mysyk R, Raymundo-Pinero E, Beguin F (2009) Electrochem Commun 11:554–556

    Article  CAS  Google Scholar 

  17. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  18. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nat Mater 2:591–594

    Article  CAS  Google Scholar 

  19. Shanina BD, Konchits AA, Kolesnik SP, Veynger AI, Danishevskii AM, Popov VV, Gordeev SK, Grechinskaya AV (2003) Carbon 41:3027–3036

    Article  CAS  Google Scholar 

  20. Arulepp M, Leis J, Latt M, Miller F, Rumma K, Lust E, Burke AF (2006) J Power Sources 162:1460–1466

    Article  CAS  Google Scholar 

  21. Janes A, Lust E (2006) J Electrochem Soc 153:A113–A116

    Article  CAS  Google Scholar 

  22. Chmiola J, Dash R, Yushin G, Gogotsi Y (2006) J Power Sources 158:765–772

    Article  CAS  Google Scholar 

  23. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763

    Article  CAS  Google Scholar 

  24. Chmiola J, Yushin G, Dash RK, Hoffman EN, Fischer JE, Barsoum MW, Gogotsi Y (2005) Electrochem Solid State Commun 8:A357–A360

    Article  CAS  Google Scholar 

  25. Portet C, Yushin G, Gogotsi Y (2008) J Electrochem Soc 155:A531–A536

    Article  CAS  Google Scholar 

  26. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G (2010) ACS Nano 4:1337–1344

    Article  CAS  Google Scholar 

  27. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Science 328:480–483

    Article  CAS  Google Scholar 

  28. Cheng G, Long DH, Liu XJ, Ling LC (2009) New Carbon Mater 24:243–250

    Article  CAS  Google Scholar 

  29. Dash RK, Yushin G, Gogotsi Y (2005) Micropor Mesopor Mater 86:50–57

    Article  CAS  Google Scholar 

  30. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu YJ (2005) J Phys Chem B109:7330–7338

    Google Scholar 

  31. Song HK, Hwang HY, Lee KH, Dao LH (2000) Electrochim Acta 45:2241–2257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Science Foundation of China (No. 50730003), and Technology Talent Foundation of Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Song, W., Liu, X. et al. Significantly enhanced rate capability in supercapacitors using carbide-derived carbons electrode with superior microstructure. J Solid State Electrochem 16, 1263–1270 (2012). https://doi.org/10.1007/s10008-011-1521-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1521-6

Keywords

Navigation