Skip to main content
Log in

Preparation of poly(vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Proton conducting nanocomposite membranes consisting of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(styrene sulfonic acid), i.e., P(VDF-co-CTFE)-g-PSSA graft copolymer and sulfonated silica and were prepared using a sol–gel reaction and subsequent oxidation of a silica precursor, i.e., (3-mercaptopropyl) trimethoxysilane (MPTMS). The successful formation of amorphous phase nanocomposite membranes was confirmed via FT-IR and wide-angle X-ray scattering. All membranes were semi-transparent and mechanically strong, as characterized by a universal tensile machine. Transmission electron microscopy and small-angle X-ray scattering analysis revealed that silica 5–10 nm in size were homogeneously dispersed in the matrix at up to 5 wt.% of MPTMS. At higher concentrations, the silica grew to more than 50 nm in size, which disrupted the microphase-separated structure of the graft copolymer. As a result, both proton conductivity (0.12 S/cm at 25 °C) and single cell performance (1.0 W/cm2 at 75 °C) were maximal at 5 wt.% MPTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Roy A, Hickner MA, Einsla B, Harrison WL, McGrath JE (2009) Synthesis and characterization of partially disulfonated hydroquinone-based poly(arylene ether sulfone)s random copolymers for application as proton exchange membranes. J Polym Sci A: Polym Chem 47:384–391

    Article  CAS  Google Scholar 

  3. Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energy 34:6902–6916

    Article  CAS  Google Scholar 

  4. Esmaeilifar A, Rowshanzamir S, Eikani MH, Ghazanfari E (2010) Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy 35:3941–3957

    Article  CAS  Google Scholar 

  5. Itoh T, Hirai K, Tamura M, Uno T, Kubo M, Aihara Y (2010) Synthesis and characteristics of hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells. J Solid State Electrochem 14:2179–2189

    Article  CAS  Google Scholar 

  6. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  7. Sahu AK, Bhat SD, Pitchumani S, Sridhar P, Vimalan V, George C, Chandrakumar N, Shukla AK (2009) Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs. J Membr Sci 345:305–314

    Article  CAS  Google Scholar 

  8. Verma A, Scott K (2010) Development of high-temperature PEMFC based on heteropolyacids and polybenzimidazole. J Solid State Electrochem 14:213–219

    Article  CAS  Google Scholar 

  9. Matos BR, Santiago EI, Rey JFQ, Ferlauto AS, Traversa E, Linardi M, Fonseca FC (2011) Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 °C with titania nanoparticles and nanotubes as fillers. J Power Sources 196:1061–1068

    Article  CAS  Google Scholar 

  10. Umeda J, Suzuki M, Kato M, Moriya M, Sakamoto W, Yogo T (2010) Proton conductive inorganic–organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell. J Power Sources 195:5882–5888

    Article  CAS  Google Scholar 

  11. Xiang Y, Yang M, Guo Z, Cui Z (2009) Proton conductive inorganic–organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell. J Membr Sci 337:318–323

    Article  CAS  Google Scholar 

  12. Amjadi M, Rowshanzamir S, Peighambardoust SJ, Hosseini MG, Eikani MH (2010) Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy 35:9252–9260

    Article  CAS  Google Scholar 

  13. Sahu AK, Selvarani G, Bhat SD, Pitchumani S, Sridhar P, Shukla AK, Narayanan N, Banerjee A, Chandrakumar N (2008) Effect of varying poly(styrene sulfonic acid) content in poly(vinyl alcohol)–poly(styrene sulfonic acid) blend membrane and its ramification in hydrogen–oxygen polymer electrolyte fuel cells. J Membr Sci 319:298–305

    Article  CAS  Google Scholar 

  14. Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. Int J Hydrogen Energy 35:2160–2175

    Article  CAS  Google Scholar 

  15. Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electochim Acta 54:4111–4117

    Article  CAS  Google Scholar 

  16. Niepcerona F, Lafittea B, Galianoa H, Bigarrea J, Nicol E, Tassin JF (2009) Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles. J Membr Sci 338:100–110

    Article  Google Scholar 

  17. Guo R, Ma X, Hu C, Jiang Z (2007) Novel PVA–silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution. Polymer 48:2939–2945

    Article  CAS  Google Scholar 

  18. Yen CY, Lee CH, Lin YF, Lin HL, Hsiao YH, Liao SH, Chuang CY, Ma CCM (2007) Novel PVA–silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution. J Power Sources 173:36–44

    Article  CAS  Google Scholar 

  19. Kim YK, Choi YG, Kim HK, Lee JS (2010) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 195:4653–4659

    Article  CAS  Google Scholar 

  20. Kim YW, Choi JK, Park JT, Kim JH (2008) Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes. J Membr Sci 313:315–322

    Article  CAS  Google Scholar 

  21. Kim YW, Park JT, Koh JH, Roh DK, Kim JH (2008) Anhydrous proton conducting membranes based on crosslinked graft copolymer electrolytes. J Membr Sci 325:319–325

    Article  CAS  Google Scholar 

  22. Roh DK, Ahn SH, Seo JA, Shul YG, Kim JH (2010) Synthesis and characterization of grafted/crosslinked proton conducting membranes based on amphiphilic PVDF copolymer. J Polym Sci B: Polym Phys 48:1110–1117

    Article  CAS  Google Scholar 

  23. Tsai JC, Kuo JF, Chen CY (2007) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 174:103–113

    Article  CAS  Google Scholar 

  24. Kalappa P, Lee JH (2007) Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym Int 56:371–375

    Article  CAS  Google Scholar 

  25. Olivetti EA, Kim JH, Sadoway DR, Asatekin A, Mayes AM (2006) Sol−gel synthesis of vanadium oxide within a block copolymer matrix. Chem Mater 18:2828–2833

    Article  CAS  Google Scholar 

  26. Kim YW, Lee DK, Lee KJ, Min BR, Kim JH (2007) In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. J Polym Sci B: Polym Phys 45:1283–1290

    Article  CAS  Google Scholar 

  27. Li YS, Church JS, Woodhead AL, Moussa F (2010) Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochimica Acta A 76:484–489

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Knowledge Economy through the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (20104010100500) and the New and Renewable Energy R&D program (2009T100100606). This work was also supported by a National Research Foundation (NRF) grant funded by the Korean government (MEST) through the Korea Center for Artificial Photosynthesis (KCAP) located in Sogang University (NRF-2009-C1AAA001-2009-0093879).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Gun Shul or Jong Hak Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, W.S., Patel, R., Hwang, H. et al. Preparation of poly(vinylidene fluoride) nanocomposite membranes based on graft polymerization and sol–gel process for polymer electrolyte membrane fuel cells. J Solid State Electrochem 16, 1405–1414 (2012). https://doi.org/10.1007/s10008-011-1519-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1519-0

Keywords

Navigation