Skip to main content
Log in

TiO2/WO3 photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The application of electrochemically enhanced photocatalysis in air treatment using a Nafion-based photoelectrochemical cell and TiO2/WO3 photoanodes for organic vapor photooxidation under both UV and visible light irradiation is briefly presented. In that direction, the obtained results regarding the preparation and characterization of the TiO2/WO3 photoanodes with enhanced photocatalytic activity are reviewed. Particular emphasis is given in the comparison of the photocatalytic behavior of bilayer TiO2/WO3 coatings, electrosynthesized on stainless steel mesh and powder C + mixed (WO3 + TiO2) photoanodes. The advantages of using a high surface area C + mixed (WO3 + TiO2) powder catalysts as photoanodes against their plain TiO2 + C and WO3 + C analogues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Mills A, Le Hunte V (1997) J Photochem Photobiol Chem 108:1–35

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  4. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) J Photochem Photobiol C Photochem Rev 9:171–192

    Article  CAS  Google Scholar 

  5. Dibble LA, Raupp GB (1990) Catal Lett 4:345–354

    Article  CAS  Google Scholar 

  6. Butterfield IM, Christensen PA, Hamnett A, Shaw KE, Walker GM, Walker SA, Howarth CR (1997) J Appl Electrochem 27:385–395

    Article  CAS  Google Scholar 

  7. Candal RJ, Zeltner WA, Anderson MA (1999) J Environ Eng 125:906–912

    Article  CAS  Google Scholar 

  8. Fernandez-Ibanez P, Malato S, Enea O (1999) Catal Today 54:329–339

    Article  CAS  Google Scholar 

  9. Christensen PA, Curtis TP, Egerton TA, Kosa SAM, Tinlin JR (2003) Appl Catal B Environ 41:371–386

    Article  CAS  Google Scholar 

  10. Egerton TA, Christensen PA, Kosa SAM, Onoka B, Harper JC, Tinlin JR (2006) Int J Environ Pollut 27:2–19

    CAS  Google Scholar 

  11. Fraga LE, Anderson MA, Beatriz MLPMA, Paschoal FMM, Romão LP, Zanoni MVB (2009) Electrochim Acta 54:2069–2076

    Article  CAS  Google Scholar 

  12. Finklea HO (ed) (1998) Semiconductor electrodes. Elsevier, Amsterdam, pp 43–145

    Google Scholar 

  13. Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1998) J Photochem Photobiol Chem 118:41–44

    Article  CAS  Google Scholar 

  14. Santato C, Ulmann M, Augustynski J (2001) J Phys Chem B 105:936–940

    Article  CAS  Google Scholar 

  15. Luo J, Hepel M (2001) Electrochim Acta 46:2913–2922

    Article  CAS  Google Scholar 

  16. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Chem Mater 14:4714–4720

    Article  CAS  Google Scholar 

  17. Natarajan C, Nogami G (1996) J Electrochem Soc 143:1547–1550

    Article  CAS  Google Scholar 

  18. Shiyanovskaya I, Hepel M (1999) J Electrochem Soc 146:243–249

    Article  CAS  Google Scholar 

  19. Kamada K, Mukai M, Matsumoto Y (2002) Electrochim Acta 47:3309–3313

    Article  CAS  Google Scholar 

  20. Pauporte Th, Goux A, Kahn-Harari A, Tacconi NR, Chenthamarakshan CR, Rajeshwar K, Lincot D (2003) J Phys Chem Solids 64:1737–1742

    Article  CAS  Google Scholar 

  21. Tacconi NR, Chenthamarakshan CR, Rajeshwar K, Pauporte T, Lincot D (2003) Electrochem Comm 5:220–224

    Article  Google Scholar 

  22. Tacconi NR, Chenthamarakshan CR, Wouters KL, MacDonnell FM, Rajeshwar K (2004) J Electroanal Chem 566:249–256

    Article  Google Scholar 

  23. Somasundaram S, Tacconi N, Chenthamarakshan CR, Rajeshwar K, Tacconi NR (2005) J Electroanal Chem 577:167–177

    Article  CAS  Google Scholar 

  24. Georgieva J, Armyanov S, Valova E, Tsacheva Ts, Poulios I, Sotiropoulos S (2005) J Electroanal Chem 585:35–43

    Article  CAS  Google Scholar 

  25. Somasundaram S, Chenthamarakshan CR, Tacconi NR, Basit NA, Rajeshwar K (2006) Electrochem Commun 8(4):539–543

    Article  CAS  Google Scholar 

  26. Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S (2006) Electrochim Acta 51(10):2076–2087

    Article  CAS  Google Scholar 

  27. Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S (2007) Electrochem Commun 9:365–370

    Article  CAS  Google Scholar 

  28. Georgieva J, Armyanov S, Valova E, Philippidis N, Poulios I, Sotiropoulos S (2008) J Adv Oxid Technol 11(2):300–307

    CAS  Google Scholar 

  29. Valova E, Georgieva J, Armyanov S, Sotiropoulos S, Hubin A, Baert K, Raes M (2010) J Electrochem Soc 157(5):D309–D315

    Article  CAS  Google Scholar 

  30. Georgieva J, Sotiropoulos S, Armyanov S, Philippidis N, Poulios I (2011) J Appl Electrochem 41:173–181

    Article  CAS  Google Scholar 

  31. Enea O (1996) Electrochim Acta 41:473–476

    Article  CAS  Google Scholar 

  32. Nogueira AF, Longo C, De Paoli M (2004) Coord Chem Rev 248:1455–1468

    Article  CAS  Google Scholar 

  33. Wang Y (2009) Sol Energy Mater Sol Cells 93:1167–1175

    Article  CAS  Google Scholar 

  34. Ichikawa S, Doi R (1996) Catal Today 27:271–277

    Article  CAS  Google Scholar 

  35. Seger B, Kamat PV (2009) J Phys Chem C 113:18946–18952

    Article  CAS  Google Scholar 

  36. Georgieva J, Armyanov S, Poulios I, Sotiropoulos S (2009) Electrochem Comm 11(8):1643–1646

    Article  CAS  Google Scholar 

  37. Georgieva J, Armyanov S, Poulios I, Jannakoudakis AD, Sotiropoulos S (2010) Electrochem Solid State Lett 13(10):P11–P13

    Article  CAS  Google Scholar 

  38. Georgieva J, Sotiropoulos S, Armyanov S, Poulios I (2011) Int J Nanoparticles 4(2/3):216–230

    Article  CAS  Google Scholar 

  39. Perry RH, Green DW, Maloney JO (eds) (1984) Perry's chemical engineer's handbook, 6th edn. McGraw-Hill, New York

    Google Scholar 

  40. Yamakata A, Ishibashi T, Onishi H (2003) J Phys Chem B 107:9820–9823

    Article  CAS  Google Scholar 

  41. Montoya JF, Velasquez JA, Salvador P (2009) Appl Catal B 88:50–58

    Article  CAS  Google Scholar 

  42. Georgieva J, Sotiropoulos S, Armyanov S, Valova E, Poulios I, Phillipides N (2009) In: Singh VG (ed) Applied electrochemistry: chemistry research and applications. Nova Science, New York, pp 301–334

  43. Turchi CS, Ollis DF (1990) J Catal 122:178–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenia Georgieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, J. TiO2/WO3 photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell. J Solid State Electrochem 16, 1111–1119 (2012). https://doi.org/10.1007/s10008-011-1504-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1504-7

Keywords

Navigation