Skip to main content
Log in

Energy level alignment at interfaces between 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butyl phenyl)-1, 2, 4-triazole (TAZ) and metals (Ca, Mg, Ag, and Au): experiment and theory

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have performed ultraviolet photoelectron spectroscopy measurements and density functional theory calculations to study the electronic structure at the interface between organic semiconductor (3-(4-biphenylyl)-4-phenyl-5-(4-tert-butyl phenyl)-1,2,4-triazole (TAZ)) and metals (Ca, Mg, Ag, and Au). The basic mechanism of interface states at organic–metal interfaces can be understood by controlling the injection of charge carriers at these interfaces. The position of highest occupied molecular orbital relative to the Fermi level and the magnitude of the interface dipole are measured for each organic–metal interface. For TAZ on Ca, Mg, and Ag, interface states are observed near the Fermi level. However, no interface state is observed for TAZ on Au. It is analyzed qualitatively that the interface state is formed due to interaction of TAZ lowest unoccupied molecular orbital composed of C2p and metal s levels. It is suggested that the interface state plays an important role in charge transport at the interface. The mechanism of formation of interface states and electrical properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D Fichou, C Ziegle (1999) Handbook of oligo- and polythiophenes. Ed. D. Fichou, Wiley-VCH, Weinheim, pp 183–282

  2. Sirringhaus H, Tessler N, Friend RH (1998) Science 280:1741

    Article  CAS  Google Scholar 

  3. Gigli G, Inganas O, Anni M, De Vittorio M, Cingolani R, Baibarella G, Favarctto L (2001) Appl Phys Lett 78:1493

    Article  CAS  Google Scholar 

  4. Horowitz G, Kouki F, Valat P (1999) Phys Rev B 59:10651

    Article  CAS  Google Scholar 

  5. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, New York

    Google Scholar 

  6. Bussi G, Runi A, Molinari E, Caldas MJ, Puschnig P, Ambrosch-Draxl C (2002) App Phys Lett 80:4118

    Article  CAS  Google Scholar 

  7. Cheng YC, Silbey RJ, da Silva Filho DA, Calbert JP, Cornil J, Bredas JL (2003) J Chem Phys 118:3764

    Article  CAS  Google Scholar 

  8. Tiago ML, Northrup JE, Louie SG (2003) Phys Rev B 67:115212

    Article  Google Scholar 

  9. Hummer K, Ambrosch-Draxl C (2005) Phys Rev B 72:205205

    Article  Google Scholar 

  10. Ishii H, Sugiyama K, Ito E, Seki K (1999) Adv Mater (Weinheim, Germany) 11:605

    Article  CAS  Google Scholar 

  11. Ishii H, Oji H, Ito E, Hayashi N, Yoshimura D, Seki K (2000) J Lumin 87–89:61

    Article  Google Scholar 

  12. Ishii H, Hayashi N, Ito E, Washizu Y, Sugi K, Kimura Y, Niwano M, Ouchi Y, Seki K (2004) Phys Status Solidi A 201:1075

    Article  CAS  Google Scholar 

  13. Song QL, Li FY, Yang H, Wu HR, Wang XZ, Zhou W, Zhao JM, Ding XM, Huang CH, Hou XY (2005) Chem Phys Lett 416:42

    Article  CAS  Google Scholar 

  14. Yang Y, Teng F, Zhou Q, Wang Y (2006) Appl Surf Sci 252:2355

    Article  Google Scholar 

  15. Kido J, Ohtaki C, Hongawa K, Okuyama K, Nagai K (1993) Jpn J Appl Phys 32:917

    Article  Google Scholar 

  16. Kido J, Hongawa K, Okuyama K, Nagai K (1993) Appl Phys Lett 63:2627

    Article  CAS  Google Scholar 

  17. Kido J, Hongawa K, Okuyama K, Nagai K (1994) Appl Phys Lett 64:815

    Article  CAS  Google Scholar 

  18. Burrows PE, Forrest SR, Thompson ME (1997) Curr Opin Solid State 2:236

    Article  CAS  Google Scholar 

  19. Lee CL, Lee KB, Kim JJ (2000) Appl Phys Lett 77:2280

    Article  CAS  Google Scholar 

  20. Picozzi S, Pecchia A, Gheorghe M, Carlo A, Lugli P, Delley B, Elstner M (2003) Phys Rev B 68:195309

    Article  Google Scholar 

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  22. Pogrebnaya TP, Becke AD (1988) Phys Rev A 38:3098

    Article  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  24. Vosko SH, Wilk L, Nusair M (1980) Canad J Phys 58:1200

    Article  CAS  Google Scholar 

  25. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Datt Bhatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, M.D., Baba, A., Sakurai, T. et al. Energy level alignment at interfaces between 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butyl phenyl)-1, 2, 4-triazole (TAZ) and metals (Ca, Mg, Ag, and Au): experiment and theory. J Solid State Electrochem 16, 1141–1149 (2012). https://doi.org/10.1007/s10008-011-1497-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1497-2

Keywords

Navigation