Journal of Solid State Electrochemistry

, Volume 16, Issue 4, pp 1447–1452 | Cite as

Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries

Original Paper

Abstract

Nano-sized La0.8Sr0.2MnO3 prepared by the polyethylene glycol assisting sol–gel method was applied as oxygen reduction catalyst in nonaqueous Li/O2 batteries. The as-synthesized La0.8Sr0.2MnO3 was characterized by X-ray diffraction (XRD), scanning electron microscopy, and Brunauer–Emmet–Teller measurements. The XRD results indicate that the sample possesses a pure perovskite-type crystal structure, even sintered at a temperature as low as 600 °C, whereas for solid-state reaction method it can only be synthesized above 1,200 °C. The as-prepared nano-sized La0.8Sr0.2MnO3 has a specific surface area of 32 m2 g−1, which is much larger than the solid-state one (1 m2 g−1), and smaller particle size of about 100 nm. Electrochemical results show that the nano-sized La0.8Sr0.2MnO3 has better catalytic activity for oxygen reduction, higher discharge plateau and specific capacity.

Keywords

Sol–gel Solid-state reaction Li/O2 Catalytic activity 

References

  1. 1.
    Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) J Am Chem Soc 128:1390–1393CrossRefGoogle Scholar
  2. 2.
    Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon JM, Laruelle S (2008) J Power Sources 178:409–421CrossRefGoogle Scholar
  3. 3.
    Amalraj SF, Aurbach D (2011) J Solid State Electrochem 15:877–890CrossRefGoogle Scholar
  4. 4.
    Leriche JB, Hamelet S, Shu J, Morcrette M, Masquelier C, Ouvrard G, Zerrouki M, Soudan P, Belin S, Elkaïm E, Baudelet F (2010) J Electrochem Soc 157:A606–A610CrossRefGoogle Scholar
  5. 5.
    Jian Z, Wu X, Xiao H (2010) J Electrochem Soc 157:A940–A946CrossRefGoogle Scholar
  6. 6.
    Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5CrossRefGoogle Scholar
  7. 7.
    Girishkumar, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203CrossRefGoogle Scholar
  8. 8.
    Kraytsberg A, Eli YE (2011) J Power Sources 196:886–893CrossRefGoogle Scholar
  9. 9.
    Laoire CO, Mukerjee S, Abraham KM (2010) J Phys Chem C 114:9178–9186CrossRefGoogle Scholar
  10. 10.
    Debart A, Bao JL, Armstrong G, Bruce PG (2007) J Power Sources 174:1177–1182CrossRefGoogle Scholar
  11. 11.
    Debart A, Bao JL, Armstrong G, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524CrossRefGoogle Scholar
  12. 12.
    Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Yang SH (2010) J Am Chem Soc 132:12170–12171CrossRefGoogle Scholar
  13. 13.
    Ren X, Zhang SS, Tran DT, Read J (2011) J Mater Chem (in press)Google Scholar
  14. 14.
    Ohsaka T, Lanqun M, Arihara K, Sotomura T (2004) Electro Chem 6:273–277CrossRefGoogle Scholar
  15. 15.
    Singh RN, Malviya M, Anindita, Sinba ASK, Chartier P (2007) Electrochim Acta 52:4264–4271CrossRefGoogle Scholar
  16. 16.
    Sequeira CAC, Santos DMF, Brito PSD (2008) Russion J Electrochem 44:919–923Google Scholar
  17. 17.
    Hu ZG, Yang YY, Shang XL, Pang HL (2005) Mater Lett 59:1373–1377CrossRefGoogle Scholar
  18. 18.
    Lu YC, Gasteiger HA, Crumlin E, McGuire R Jr, Yang SH (2010) J Electrochem Soc 157:A1016–A1025CrossRefGoogle Scholar
  19. 19.
    Kang JW, Kim DH, Mathew V, Lim JS, Gim JH, Kim J (2011) J Electrochem Soc 158:A59–A62CrossRefGoogle Scholar
  20. 20.
    Lee GH, Hoh SH, Jeong JW, Choi BJ, Kim SH, Ri HC (2002) J Am Chem Soc 124:12094–12095CrossRefGoogle Scholar
  21. 21.
    Herbert G (1994) J Eur Ceram Soc 14:205–214CrossRefGoogle Scholar
  22. 22.
    Kameli P, Salamati H, Aezami A (2008) J Alloys Compd 450:7–11CrossRefGoogle Scholar
  23. 23.
    Grossin D, Noudem JG (2004) Solid State Sci 6:939–944CrossRefGoogle Scholar
  24. 24.
    Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2008) J Power Sources 178:683–686CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zhenghao Fu
    • 1
  • Xiujing Lin
    • 1
  • Tao Huang
    • 1
  • Aishui Yu
    • 1
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New EnergyFudan UniversityShanghaiChina

Personalised recommendations