Journal of Solid State Electrochemistry

, Volume 16, Issue 3, pp 977–983

Low-voltage anodized TiO2 nanostructures studied by alternate current electrochemical microscopy and photoelectrochemical measurements

  • Marina E. Rincón
  • Cecilia Cuevas-Arteaga
  • Mauricio Solís de la Fuente
  • Arturo Estrada-Vargas
  • Norberto Casillas
  • Maximiliano Bárcena-Soto
Original Paper

Abstract

This paper presents the characterization of TiO2 nanostructures obtained by low-voltage anodization using alternate current electrochemical microscopy (AC-SECM) and photoelectrochemical (PEC) measurements. TiO2 nanostructures were obtained from the exposure of titanium foils to several aqueous acidic solutions of hydrofluoric acid + phosphoric acid at potentials of 1 to 3 V. Scanning electron microscopy, X ray diffraction, and atomic force microscopy studies evidence the formation of a thin porous amorphous layer (<600 nm) with pore size in the range of 200–1,000 nm. By AC-SECM studies at different bias, we were able to confirm the unambiguous semiconducting properties of as-obtained porous titania films, as well as differences in surface roughness and conductivity in specimens obtained at both potentials. The difference in conductivity persists in air annealed samples, as demonstrated by electrochemical impedance spectroscopy and PEC measurements. Specimens obtained at 3 V show lower photocurrent and dark current than those obtained at 1 V, regardless of their larger conductivity, and we proposed it is due to differences on the oxide layer formed at the pore bottom.

Keywords

Porous Anodization Titania Photoelectrochemical 

References

  1. 1.
    Lee WJ, Alhosan M, Yohe SL, Macy NL, Smyrl WH (2008) J Electrochem Soc 155:B915–B920CrossRefGoogle Scholar
  2. 2.
    Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24–28CrossRefGoogle Scholar
  3. 3.
    Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) J Phys Chem C 113:6327–6359CrossRefGoogle Scholar
  4. 4.
    Zwilling V, Darque-ceeretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Surf Interface Anal 27:629–637CrossRefGoogle Scholar
  5. 5.
    Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334CrossRefGoogle Scholar
  6. 6.
    Mor GK, Varghese OK, Grimes CA (2003) J Mater Res 18:2588–2593CrossRefGoogle Scholar
  7. 7.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Gimes CA (2003) Adv Mater 15:624–627CrossRefGoogle Scholar
  8. 8.
    Macak JM, Sirotna K, Schmuki P (2005) Electrochim Acta 50:3679–3684CrossRefGoogle Scholar
  9. 9.
    Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100–2102CrossRefGoogle Scholar
  10. 10.
    Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P (2005) J Electrochem Soc 152:B405–B410CrossRefGoogle Scholar
  11. 11.
    Macak JM, Tsuchiya H, Berger S, Bauer S, Fujimoto S, Schmuki P (2006) Chem Phys Lett 428:421–425CrossRefGoogle Scholar
  12. 12.
    Beranek R, Hildebrand H, Schmuki P (2006) Electrochem Solid-State Lett 6:B12–B14CrossRefGoogle Scholar
  13. 13.
    Bauer S, Cléber S, Schmuki P (2006) Electrochem Commun 8:1321–1325CrossRefGoogle Scholar
  14. 14.
    Macak M, Gong BG, Hueppe M, Schmuki P (2007) Adv Mater 19:3207–3031CrossRefGoogle Scholar
  15. 15.
    Yasuda K, Macak JM, Berger S, Ghicov A, Schmuki P (2007) J Electrochem Soc 154:C472–C478CrossRefGoogle Scholar
  16. 16.
    Seyeux A, Berger S, LeClere D, Valota A, Skeldon P, Thompson GE, Kunze J, Schmuki P (2009) J Electrochem Soc 156:K17–K22CrossRefGoogle Scholar
  17. 17.
    Thébault F, Vuillemin B, Oltra R, Kunze J, Seyeux A, Schmuki P (2009) Electrochem Solid-State Lett 12:C5–C9CrossRefGoogle Scholar
  18. 18.
    Oyarzún DP, Córdova R, Linarez-Pérez OE, Muñoz E, Henríquez R, López-Teijelo M, Gómez H (2010) Morphological, electrochemical and photoelectrochemical characterization of nanotubular TiO2 synthetized electrochemically from different electrolytes. J Solid State Electrochem. doi:10.1007/s10008-010-1236-0
  19. 19.
    Nguyen QAS, Bhargava YV, Devine TM (2009) J Electrochem Soc 156:E55–E61CrossRefGoogle Scholar
  20. 20.
    Sánchez M, Cuevas C, Rincón ME (2010) ECS Trans 28:9–18CrossRefGoogle Scholar
  21. 21.
    Horrocks BR, Schmidtke D, Heller A, Bard AJ (1995) Anal Chem 65:3605–3614CrossRefGoogle Scholar
  22. 22.
    Ballesteros-Katemann B, Schulte A, Calvo EJ, Koudelka-Hep M, Schuhmann W (2002) Electrochem Commun 4:134–138CrossRefGoogle Scholar
  23. 23.
    Ballesteros-Katemann B, Inchauspe CG, Castro PA, Schulte A, Calvo EJ, Schuhmann W (2003) Electrochim Acta 48:1115–1121CrossRefGoogle Scholar
  24. 24.
    Eckhard K, Kranz C, Shin H, Mizaikoff B, Schuhmann W (2007) Anal Chem 79:5435–5438CrossRefGoogle Scholar
  25. 25.
    Estrada-Vargas A, Ávalos J, Bárcena-Soto M, González I, Antaño R, Casillas N (2006) 210th meeting of the the Electrochemical Society, Abstract 0057Google Scholar
  26. 26.
    Hernández-Ramírez F (2001) Diseño, construcción y caracterización de un microscopio electroquímico y fotoelectroquímico de barrido. Master thesis, Universidad de Guadalajara, GuadalajaraGoogle Scholar
  27. 27.
    Diakowski PM, Baranski AS (2006) Electrochim Acta 52:854–862CrossRefGoogle Scholar
  28. 28.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energ Mat Sol C 90:2011–2075CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marina E. Rincón
    • 1
  • Cecilia Cuevas-Arteaga
    • 2
  • Mauricio Solís de la Fuente
    • 1
  • Arturo Estrada-Vargas
    • 3
  • Norberto Casillas
    • 4
  • Maximiliano Bárcena-Soto
    • 4
  1. 1.Departamento de Materiales Solares, Centro de Investigación en EnergíaUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  2. 2.Facultad de Ciencias Químicas e Ingeniería, CIICAP, Centro de Investigación en Ingeniería y Ciencias AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Ingeniería QuímicaUniversidad de GuadalajaraGuadalajaraMexico
  4. 4.Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de QuímicaUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations