Journal of Solid State Electrochemistry

, Volume 16, Issue 2, pp 715–722 | Cite as

Anomalous codeposition of cobalt and ruthenium from chloride–sulfate baths

  • Marjaneh Jafari Fesharaki
  • Gholam Reza Nabiyouni
  • Júlia Dégi
  • Lajos Pogány
  • Ádám Révész
  • Imre Bakonyi
  • László Péter
Original Paper

Abstract

Codeposition of Ru and Co was studied at room temperature and at 50 °C with various Ru3+ and Co2+ concentrations in the electrolyte. The codeposition of Co and Ru proved to be anomalous since no pure Ru could be obtained in the presence of Co2+ in the electrolyte, but a significant Co incorporation into the deposit was detected at potentials where the deposition of pure Co was not possible. The composition of the deposits varied monotonously with the change of the concentration ratio of Co2+ and Ru3+. The deposition of Ru was much hindered, and the current efficiency was a few percent only when the molar fraction of Co in the deposit was low. Continuous deposits could be obtained only when the molar fraction of Co in the deposit was at least 40 at.%. The deposit morphology was related to the molar fraction of Co in the deposit. The X-ray diffractograms are in conformity with a hexagonal close-packed alloy and indicate the formation of nanocrystalline deposits. Two-pulse plating did not lead to a multilayer but to a Co-rich alloy. Magnetoresistance of the samples decreased with increasing Ru content.

Keywords

Ruthenium Cobalt Anomalous codeposition Alloy formation Pulse plating 

References

  1. 1.
    Cavallotti PL, Bestetti M, Franz S (2003) Electrochim Acta 48:3013–3020CrossRefGoogle Scholar
  2. 2.
    Wang F, Hosoiri K, Doi S, Okamoto N, Kuzushima T, Totsuka T, Watanabe T (2004) Electrochem Commun 6:1149–1152CrossRefGoogle Scholar
  3. 3.
    Zana I, Zangari G, Shamsuzzoha M (2005) J Magn Magn Mater 292:266–280CrossRefGoogle Scholar
  4. 4.
    Jeong GH, Lee CH, Jang JH, Park NJ, Suh SJ (2008) J Magn Magn Mater 320:2985–2987CrossRefGoogle Scholar
  5. 5.
    Cortés M, Gómez E, Vallés E (2010) Electrochem Commun 12:132–136CrossRefGoogle Scholar
  6. 6.
    Rožman KŽ, Kovač J, McGuiness PJ, Samardžija Z, Markoli B, Kobe S (2010) Thin Solid Films 518:1751–1755CrossRefGoogle Scholar
  7. 7.
    Huang Q, Bonhote C, Lam J, Romankiw LR (2007) ECS Trans 3:61–69CrossRefGoogle Scholar
  8. 8.
    Yasin HM, Denuault G, Pletcher D (2009) J Electroanal Chem 633:327–332CrossRefGoogle Scholar
  9. 9.
    Safranek WH (1974) The properties of electrodeposited metals and alloys—a handbook, American Elsevier Publishing, New York, Chapter 15, pp. 369–374Google Scholar
  10. 10.
    Reid FH, Blake JC (1961) Trans Inst Met Finish 38:45–51Google Scholar
  11. 11.
    Szabó S, Bakos I (1987) J Electroanal Chem 230:233–240CrossRefGoogle Scholar
  12. 12.
    Vuković M, Čukman D (1999) J Electroanal Chem 474:167–173CrossRefGoogle Scholar
  13. 13.
    Juzikis P, Gudavičiūtė L, Matulionis E (1995) Platinum Metals Review 39:68–71Google Scholar
  14. 14.
    Juzikis P, Gudavičiūtė L, Messmer A, Kittel MU (1997) J Appl Electrochem 27:991–994CrossRefGoogle Scholar
  15. 15.
    Bakonyi I, Tóth-Kádár E, Tóth J, Kiss LF, Pogány L, Cziráki Á, Ulhaq-Bouillet C, Pierron-Bohnes V, Dinia A, Arnold B, Wetzig K (2002) Europhys Lett 58:408–414CrossRefGoogle Scholar
  16. 16.
    Bakonyi I, Tóth-Kádár E, Cziráki Á, Tóth J, Kiss LF, Ulhaq-Bouillet C, Pierron-Bohnes V, Dinia A, Arnold B, Wetzig K, Santiago P, Yacamáne MJ (2002) J Electrochem Soc 149:C469–C473CrossRefGoogle Scholar
  17. 17.
    Parkin SSP (1991) Phys Rev Lett 67:3598–3601CrossRefGoogle Scholar
  18. 18.
    Parkin SSP, More N, Roche KP (1990) Phys Rev Lett 64:2304–2307CrossRefGoogle Scholar
  19. 19.
    Bloemen PH, Kesteren HW, Swagten HJM, de Jone WJM (1994) Phys Rev B 50:13505–13514CrossRefGoogle Scholar
  20. 20.
    Zoll S, Dinia A, Jay JP, Meny C, Pan GZ, Michel A, El Chahal L, Pierron-Bohnes V, Panissod P, Van den Berg HAM (1998) Phys Rev B 57:4842–4848CrossRefGoogle Scholar
  21. 21.
    Massalski TB (ed.) Binary alloy phase diagrams, 2nd edn. plus updates on CD-ROM, ASM International, Materials Park, Ohio, USA, (1996)Google Scholar
  22. 22.
    Zhu AL, Teo MY, Kulinich SA (2009) Appl Catal A 352:17–26CrossRefGoogle Scholar
  23. 23.
    Péter L, Liu QX, Kerner Z, Bakonyi I (2004) Electrochim Acta 49:1513–1526Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marjaneh Jafari Fesharaki
    • 1
    • 2
  • Gholam Reza Nabiyouni
    • 2
  • Júlia Dégi
    • 1
  • Lajos Pogány
    • 1
  • Ádám Révész
    • 3
  • Imre Bakonyi
    • 1
  • László Péter
    • 1
  1. 1.Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Physics, Faculty of ScienceUniversity of ArakArakIran
  3. 3.Department of Materials PhysicsEötvös UniversityBudapestHungary

Personalised recommendations