The electrochemistry of activated carbonaceous materials: past, present, and future

Abstract

Carbonaceous materials are widely used in electrochemistry. All allotropic forms of carbons—graphite, glassy carbon, amorphous carbon, fullerenes, nanotubes, and doped diamond—are used as important electrode materials in all fields of modern electrochemistry. Examples include graphite and amorphous carbons as anode materials in high-energy density rechargeable Li batteries, porous carbon electrodes in sensors and fuel cells, nano-amorphous carbon as a conducting agent in many kinds of composite electrodes (e.g., cathodes based on intercalation inorganic host materials for batteries), glassy carbon and doped diamond as stable robust and high stability electrode materials for all aspects of basic electrochemical studies, and more. Amorphous carbons can be activated to form very high specific surface area (yet stable) electrode materials which can be used for electrostatic energy storage and conversion [electrical double-layer capacitors (EDLC)] and separation techniques based on electro-adsorption, such as water desalination by capacitive de-ionization (CDI). Apart from the many practical aspects of activated carbon electrodes, there are many highly interesting and important basic aspects related to their study, including transport phenomena, molecular sieving behavior, correlation between electrochemical behavior and surface chemistry, and more. In this article, we review several important aspects related to these electrode materials, in a time perspective (past, present, and future), with the emphasis on their importance to EDLC devices and CDI processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Roop CB, Meenakshi G (2005) Activated carbon adsorption. Taylor & Francis Group, LLC

  2. 2.

    Burchell TD (ed) (1999) Carbon materials for advanced technologies. Elsevier Science

  3. 3.

    Kroto HW, Heath JR, O’Brien SC, Curl RE, Smalley RE (1985) Nat Lond 318:162–163

    CAS  Article  Google Scholar 

  4. 4.

    Frondel C, Marvin U (1967) Nature 214:587–589

    CAS  Article  Google Scholar 

  5. 5.

    Dresselhaus MS, Dresselhaus G, Eklund C (1996) Science of fullerenes and carbon nanotubes. Academic, New York

    Google Scholar 

  6. 6.

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) PNAS 102:10451–10453

    CAS  Article  Google Scholar 

  7. 7.

    Kinoshita K (1988) Carbon: electrochemical and Physiochemical Properties. Wiley–Interscience, New York

    Google Scholar 

  8. 8.

    David L, Thomas BR (eds) (2002) Handbook of batteries. The McGraw-Hill Companies, Inc

  9. 9.

    Soffer A, Saguee S, Golub D, Azaria M, Hassid M, Cohen H. Method of improving the selectivity of carbon membranes by chemical vapour deposition, U.S. Patent 5,695,818

  10. 10.

    Koresh JE, Soffer A (1983) Sep Sci Technol 18:723

    CAS  Article  Google Scholar 

  11. 11.

    Koresh J, Soffer A (1987) Sep Sci Technol 22:973

    CAS  Article  Google Scholar 

  12. 12.

    Jones CW, Koros WJ (1994) Carbon 32:1419

    CAS  Article  Google Scholar 

  13. 13.

    Centeno TA, Fuertes AB (1999) J Membr Sci 160:201

    CAS  Article  Google Scholar 

  14. 14.

    Kawabuchi Y, Kishino M, Kawano S, Whitehurst DD, Mochida I (1996) Langmuir 12:4281

    CAS  Article  Google Scholar 

  15. 15.

    Mochida I, Yatsunami S, Kawabuchi Y, Nakayama Y (1995) Carbon 33:1611

    CAS  Article  Google Scholar 

  16. 16.

    Hsieh HP (1990) Membr Mater Process 84:1

    Google Scholar 

  17. 17.

    Koresh J, Soffer A (1980) J Chem Soc Faraday Trans I 76:2472

    CAS  Article  Google Scholar 

  18. 18.

    Jinwoo L, Jaeyun K, Taeghwan H (2006) Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  19. 19.

    Corma A (1997) Chem Rev 97:2373

    CAS  Article  Google Scholar 

  20. 20.

    Kyotani T, Nagai T, Inoue S, Tomita A (1997) Chem Mater 9:609

    CAS  Article  Google Scholar 

  21. 21.

    Rodriguez-Miraso J, Cordero T, Radiovic LR, Rodriguez JJ (1998) Chem Mater 10:550

    Article  Google Scholar 

  22. 22.

    Johnson SA, Brigham ES, Olliver PJ, Mallouk TE (1997) Chem Mater 9:2448

    CAS  Article  Google Scholar 

  23. 23.

    Ma ZX, Kyotani T, Tomita A (2000) Chem Commun 2365

  24. 24.

    Ma ZX, Kyotani T, Liu Z, Terasaki O, Tomita A (2001) Chem Mater 13:4413

    CAS  Article  Google Scholar 

  25. 25.

    Kyotani T, Ma Z, Tomita A (2003) Carbon 41:1451

    CAS  Article  Google Scholar 

  26. 26.

    Hou PX, Orikasa H, Yamazaki T, Matsuoka K, Tomita A, Setoyama N, Fukushima Y, Kyotani T (2005) Chem Mater 17:5187

    CAS  Article  Google Scholar 

  27. 27.

    Tamai H, Kakii T, Hirota Y, Kumamoto T, Yasuda H (1996) Chem Mater 8:454

    CAS  Article  Google Scholar 

  28. 28.

    Tamai H, Ikeuchi M, Kojima S, Yasuda H (1997) Adv Mater 9:55

    CAS  Article  Google Scholar 

  29. 29.

    Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A (1995) Carbon 33:1085

    CAS  Article  Google Scholar 

  30. 30.

    Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A (1996) Carbon 34:53

    CAS  Article  Google Scholar 

  31. 31.

    Patel N, Okabe K, Oya A (2002) Carbon 40:315

    CAS  Article  Google Scholar 

  32. 32.

    Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A (1997) Carbon 35:1031

    CAS  Article  Google Scholar 

  33. 33.

    Oya A, Kasahara N (2000) Carbon 38:1141

    CAS  Article  Google Scholar 

  34. 34.

    Barton SS, Evans MJB, Harrison BH (1974) J Colloid Interface Sci 49:462

    CAS  Article  Google Scholar 

  35. 35.

    Howard GJ, Szynaka S (1975) J Appl Poly Sci 19:2633

    CAS  Article  Google Scholar 

  36. 36.

    Marsh H, Crowford DO, O’Gradey TM, Wennenberg A (1982) Carbon 20:419

    CAS  Article  Google Scholar 

  37. 37.

    Verma SK, Walker PL (1992) Carbon 30:837

    CAS  Article  Google Scholar 

  38. 38.

    Carrott PJM (1995) Carbon 33:1307

    CAS  Article  Google Scholar 

  39. 39.

    Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  40. 40.

    Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieVes. Academic, New York

    Google Scholar 

  41. 41.

    Koresh J, Soffer A (1986) J Chem Soc Faraday Trans I 82:2057

    CAS  Article  Google Scholar 

  42. 42.

    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) J Electrochem Soc 147(7):2486

    CAS  Article  Google Scholar 

  43. 43.

    Takashi K (2000) Carbon 38:269–286

    Article  Google Scholar 

  44. 44.

    Helmholtz HV (1853) Ann Phys (Leipzig, Ger) 89

  45. 45.

    Gouy G (1903) Ann Chim Phys 29(7):145

    CAS  Google Scholar 

  46. 46.

    Chapman DL (1913) Phil Mag 25(6):475

    Google Scholar 

  47. 47.

    Oren Y, Tobias H, Soffer A (1984) J Electroanal Chem 162:87

    CAS  Google Scholar 

  48. 48.

    Oren Y, Soffer A (1985) J Electroanal Chem 186:63

    CAS  Article  Google Scholar 

  49. 49.

    Oren Y, Soffer A (1986) J Electroanal Chem 206:101

    CAS  Article  Google Scholar 

  50. 50.

    Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  51. 51.

    Eliad L, Salitra G, Soffer A, Aurbach D (2001) J Phys Chem B 105:6880

    CAS  Article  Google Scholar 

  52. 52.

    Diederich L, Barborini E, Piseri P, Podesta A, Milani P, Schneuwly A, Gallay R (1999) Appl Phys Lett 75:2662

    CAS  Article  Google Scholar 

  53. 53.

    Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH (1999) J Power Sources 84:126

    CAS  Article  Google Scholar 

  54. 54.

    Xia J, Chen F, Li J, Tao N (2009) Nat Nanotechnol 4:505–509

    CAS  Article  Google Scholar 

  55. 55.

    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    CAS  Article  Google Scholar 

  56. 56.

    Stoller MD, Park S, Zhu Y, An J, Ruoff RF (2008) Nano Lett 8:10

    Article  CAS  Google Scholar 

  57. 57.

    Polak E, Salitra G, Soffer A, Aurbach D (2006) Carbon 44:3302

    Article  CAS  Google Scholar 

  58. 58.

    Soffer A (1973) J Electroanal Chem 40:153

    Article  Google Scholar 

  59. 59.

    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna OL (2006) Science 313:1760

    CAS  Article  Google Scholar 

  60. 60.

    Levi MD, Salitra G, Levy N, Aurbach D, Maier J (2009) Nat Mater 11:872

    Article  CAS  Google Scholar 

  61. 61.

    Yau-Ren N, Hsisheng T (2003) J Electroanal Chem 540:119–127

    Article  Google Scholar 

  62. 62.

    Chang SK, Do-Young K, Han-Kyu L, Yong-Gun S, Tae-Hee L, (2002) J Power Sources 108:1–2 1 185

  63. 63.

    Pollak E, Genish I, Salitra G, Soffer A, Klein L, Aurbach D (2006) J Phys Chem B 110:7443

    CAS  Article  Google Scholar 

  64. 64.

    Service RF (2006) Science 313:902–905

    CAS  Article  Google Scholar 

  65. 65.

    Tarascon JM, Arm M (2001) Nature 414:359–367

    CAS  Article  Google Scholar 

  66. 66.

    Simon P, Gogotsi Y (2008) Nat Mater 7:845

    CAS  Article  Google Scholar 

  67. 67.

    Miller JR, Simon P (2008) Science 321:651

    CAS  Article  Google Scholar 

  68. 68.

    Frackowiak E (2007) Phys Chem Chem Phys 9:1774

    CAS  Article  Google Scholar 

  69. 69.

    Hahn M, Baertschi M, Barbieri O, Sauter JC, Kotz R, Gallayb R (2004) Electrochem Solid-State Lett 7(2):A33–A36

    CAS  Article  Google Scholar 

  70. 70.

    Balducci A et al (2005) Electrochim Acta 50:2233–2237

    CAS  Article  Google Scholar 

  71. 71.

    Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    CAS  Article  Google Scholar 

  72. 72.

    Frackowiak E, Beguin F (2001) Carbon 39:937

    CAS  Article  Google Scholar 

  73. 73.

    Frackowiak E, Lota G, Pernak J (2005) Appl Phys Lett 86:164104

    Article  CAS  Google Scholar 

  74. 74.

    Ue M, Ida K, Mori S (1994) J Electrochem Soc 141:2989

    CAS  Article  Google Scholar 

  75. 75.

    Balducci A et al (2007) J Power Sources 165:922–927

    CAS  Article  Google Scholar 

  76. 76.

    Balducci A, Soavi F, Mastragostino M (2006) Appl Phys A 82:627–632

    CAS  Article  Google Scholar 

  77. 77.

    Ue M (2005) In: Ohno H (ed) Electrochemical aspects of ionic liquids. John Wiley & Sons, Inc, p 205

  78. 78.

    Dupont J, Suarez PAZ (2006) Phys Chem Chem Phys 8:2441

    CAS  Article  Google Scholar 

  79. 79.

    Endres F, MacFarlane D, Abbott A (eds) (2008) Electrodeposition from ionic liquids. (Wiley-VCH)

  80. 80.

    Beck F, Dolata M, Grivei E, Probst N (2001) J Appl Electrochem 31:845

    CAS  Article  Google Scholar 

  81. 81.

    Portet C, Yushin G, Gogotsi Y (2007) Carbon 45(13):2511

    CAS  Article  Google Scholar 

  82. 82.

    Richner R, Muller S, Wokaum A (2002) Carbon 40:307

    CAS  Article  Google Scholar 

  83. 83.

    Pekala RW (1989) J Mater Sci 24:3221

    CAS  Article  Google Scholar 

  84. 84.

    Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) J NonCryst Solids 145:90

    CAS  Article  Google Scholar 

  85. 85.

    Pekala RW, Schaefer DW (1993) Macromolecules 26:5487

    CAS  Article  Google Scholar 

  86. 86.

    Tamon H, Ishzaka H, Araki T, Okazaki M (1998) Carbon 36:1257

    CAS  Article  Google Scholar 

  87. 87.

    Pr¨obstle H, Wiener M, Fricke J (2003) J Porous Mater 10:213

    Article  Google Scholar 

  88. 88.

    Fischer U, Saliger R, Bock V, Petricevic R, Fricke J (1997) J Porous Mater 4:281

    CAS  Article  Google Scholar 

  89. 89.

    Schmitt C, Pr¨obstle H, Fricke J (2001) J NonCryst Solids 285:277

    CAS  Article  Google Scholar 

  90. 90.

    Pr¨obstle H, Schmitt C, Fricke J (2002) J Power Sources 105:189

    Article  Google Scholar 

  91. 91.

    Petricevic R, Glora M, Fricke J (2001) Carbon 39:857

    CAS  Article  Google Scholar 

  92. 92.

    Li W, Reichenaur G, Fricke J (2002) Carbon 40:2955

    CAS  Article  Google Scholar 

  93. 93.

    Pekala RW, Melamine-formaldehyde aerogels. US Patent 5,081,163, January 14, 1992, Assignee: TheUnited States of America as represented by the Department of Energy, Washington, DC

  94. 94.

    Noked M, Soffer A, Avraham E, Aurbach D (2009) J Phys Chem C 113(51):21319

    CAS  Article  Google Scholar 

  95. 95.

    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    CAS  Article  Google Scholar 

  96. 96.

    Braun A, Bartsch M, Schnyder B, Kotz R, Haas O, Haubold HG, Goerigk G (1999) J NonCryst Solids 260:1

    CAS  Article  Google Scholar 

  97. 97.

    Jenkins GM, Kawamura K (1976) Polymeric carbons–carbon fibre, glass and char. Cambridge University Press, Cambridge

    Google Scholar 

  98. 98.

    Oya A, Marsh H, Heintz E A, Rodriguez-Reinoso F (eds) (1997) Introductionto Carbon Technologies, Universidad de Alacante: 561

  99. 99.

    Sullivan MG, Bartsch M, Kotz R, Haas O (1996) Proceedings of the Electrochemical Socioety, vol. 96–25, The Electrochemical Society, Pennington, NJ: 192

  100. 100.

    Braun A, Bartsch M, Schnyder B, Kotz R, Haas O, Wokaun A (2002) Carbon 40:375

    CAS  Article  Google Scholar 

  101. 101.

    Braun A, Bartsch M, Merlo O, Schnyder B, Schaffner B, Kotz R, Haas O, Wokaun A (2003) Carbon 41:759

    CAS  Article  Google Scholar 

  102. 102.

    Jurewicz K, Vix C, Frackowiak E, Saadallach S, Reda M, Parmentier J, Patarin J, Be´guin F (2004) J Phys Chem Solids 65:287

    CAS  Article  Google Scholar 

  103. 103.

    Yoon S, Lee J, Hyeon T, Oh SM (2000) J Electrochem Soc 147:2507

    CAS  Article  Google Scholar 

  104. 104.

    Kyotani T (2000) Carbon 38:2

    Article  Google Scholar 

  105. 105.

    Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 45:677

    Article  Google Scholar 

  106. 106.

    Han S, Lee KT, Oh SM, Hyeon T (2003) Carbon 41:1049

    CAS  Article  Google Scholar 

  107. 107.

    Fuertes AB (2003) J Mater Chem 13:3085

    CAS  Article  Google Scholar 

  108. 108.

    Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Béguin F (2007) Adv Funct Mater 17:1828–1836

    CAS  Article  Google Scholar 

  109. 109.

    Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T(2007) J Phys Chem C (1):227–233

  110. 110.

    Avraham E, Bouhadana Y, Soffer A, Aurbach D (2008) J Phys Chem C 112:7385

    CAS  Article  Google Scholar 

  111. 111.

    Pollak E, Levy N, Eliad L, Salitra G, Soffer A, Aurbach D (2008) Isr J Chem 48:287–303

    CAS  Article  Google Scholar 

  112. 112.

    Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS (2001) J Electrochem Soc 148:A910

    CAS  Article  Google Scholar 

  113. 113.

    Hyeok An K, Kim WS, Park YS, Choi YC, Lee SM (2001) Adv Mater 13:7

    Google Scholar 

  114. 114.

    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480

    CAS  Article  Google Scholar 

  115. 115.

    Chunsheng D, Pan N (2006) Nanotechnology 17:5314–5318

    Article  CAS  Google Scholar 

  116. 116.

    Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, B´eguin F (2002) Chem Phys Lett 361:35

    CAS  Article  Google Scholar 

  117. 117.

    Bordjiba T, Mohamedi M, Dao LH (2008) Adv Mater 20:815–819

    CAS  Article  Google Scholar 

  118. 118.

    Jagannathan S, Liu T, Kumar S (2010) Compos Sci Technol 70:593–598

    CAS  Article  Google Scholar 

  119. 119.

    Izadi-Najafabadi A, Yamada T, Futaba D, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K, ACS Nano

  120. 120.

    Kim et al (2010) J Phys Chem C 114(35):15223

    CAS  Google Scholar 

  121. 121.

    Park et al (2009) Appl Surf Sci 255(11):6028–6032

    CAS  Article  Google Scholar 

  122. 122.

    Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) Chem Sci 120:9–13

    CAS  Article  Google Scholar 

  123. 123.

    Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103–13107

    CAS  Article  Google Scholar 

  124. 124.

    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863–4868

    CAS  Article  Google Scholar 

  125. 125.

    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3499

    Article  CAS  Google Scholar 

  126. 126.

    Oren Y, Soffer A (1978) J Electrochem Soc 125(6):869

    CAS  Article  Google Scholar 

  127. 127.

    Avraham E, Yaniv B, Soffer A, Aurbach D (2009) J Electrochem Soc 156:P95

    CAS  Article  Google Scholar 

  128. 128.

    Avraham E, Noked M, Yaniv B, Soffer A, Aurbach D (2009) J Electrochem Soc 156:P157

    CAS  Article  Google Scholar 

  129. 129.

    Johnson AM, Venolia AW, Wilbourne RG, Newman J (1970) The Electrosorb Process for Desalting Water, Marquardt, Van Nuys, CA

  130. 130.

    Caudle DD, Tucker JH, Cooper JL, Arnold BB, Papastamataki A (1966) Electrochemical demineralization of water with carbon electrodes, Research Report, Oklahoma University Research Institute

  131. 131.

    Johnson AM, Newman J (1971) J Electrochem Soc 118(3):510–517

    CAS  Article  Google Scholar 

  132. 132.

    Oren Y (2008) Desalination 228:10–29

    CAS  Article  Google Scholar 

  133. 133.

    Farmer JC, Fix DV, Mack GC, Pekala RW, Poco JF (1996) J Appl Electrochem 26:1007–1018

    CAS  Article  Google Scholar 

  134. 134.

    Li L, Zou L, Song H, Morris G (2009) Carbon 47:775

    CAS  Article  Google Scholar 

  135. 135.

    Ban A, Schafer A, Wendt H (1998) J Appl Electrochem 28:227–236

    CAS  Article  Google Scholar 

  136. 136.

    Ayranci E, Conway BE (2001) Anal Chem 73:1181–1189

    CAS  Article  Google Scholar 

  137. 137.

    Ryoo MW, Seo G (2003) Water Res 37:1527–1534

    CAS  Article  Google Scholar 

  138. 138.

    Ayranci E, Conway BE (2001) J Appl Electrochem 31:257–266

    CAS  Article  Google Scholar 

  139. 139.

    Park KK, Lee JB, Park PY, Yoon SW, Moon JS, Eum HM, Lee CW (2007) Desalination 206:86

    CAS  Article  Google Scholar 

  140. 140.

    Andersona MA, Cuderob AL, Palmab J (2010) Electrochim Acta 55:3845–3856

    Article  CAS  Google Scholar 

  141. 141.

    Bouhadana Y, Avraham E, Soffer A, Aurbach D (2010) AIChE J 56:779–789

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doron Aurbach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Noked, M., Soffer, A. & Aurbach, D. The electrochemistry of activated carbonaceous materials: past, present, and future. J Solid State Electrochem 15, 1563 (2011). https://doi.org/10.1007/s10008-011-1411-y

Download citation

Keywords

  • Carbon electrodes
  • Activated carbons
  • EDLC
  • CDI
  • Adsorption phenomena